Experiential-Informed Data Reconstruction for Fishery Sustainability and Policies in the Azores
- URL: http://arxiv.org/abs/2309.09326v2
- Date: Sun, 13 Oct 2024 22:14:40 GMT
- Title: Experiential-Informed Data Reconstruction for Fishery Sustainability and Policies in the Azores
- Authors: Brenda Nogueira, Gui M. Menezes, Nuno Moniz, Rita P. Ribeiro,
- Abstract summary: We focus on a unique data set from the Azores' fishing data collection programs between 2010 and 2017.
We leverage domain knowledge and machine learning methods to retrieve or associate metier-related information to each fish landing.
- Score: 3.2873782624127834
- License:
- Abstract: Fishery analysis is critical in maintaining the long-term sustainability of species and the livelihoods of millions of people who depend on fishing for food and income. The fishing gear, or metier, is a key factor significantly impacting marine habitats, selectively targeting species and fish sizes. Analysis of commercial catches or landings by metier in fishery stock assessment and management is crucial, providing robust estimates of fishing efforts and their impact on marine ecosystems. In this paper, we focus on a unique data set from the Azores' fishing data collection programs between 2010 and 2017, where little information on metiers is available and sparse throughout our timeline. Our main objective is to tackle the task of data set reconstruction, leveraging domain knowledge and machine learning methods to retrieve or associate metier-related information to each fish landing. We empirically validate the feasibility of this task using a diverse set of modeling approaches and demonstrate how it provides new insights into different fisheries' behavior and the impact of metiers over time, which are essential for future fish population assessments, management, and conservation efforts.
Related papers
- IoT-Based Environmental Control System for Fish Farms with Sensor
Integration and Machine Learning Decision Support [1.3499500088995464]
This research article showcases the power of data-driven decision support in fish farming.
It promises to meet the growing demand for seafood while emphasizing environmental responsibility and economic viability.
arXiv Detail & Related papers (2023-11-07T14:35:16Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
This study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus.
We compare the results of our deep learning approach to experiments and to the results of a state-of-the-art analytical model.
We demonstrate that machine learning models social interactions can directly compete with their analytical counterparts in subtle experimental observables.
arXiv Detail & Related papers (2023-02-14T05:25:03Z) - Towards The Creation Of The Future Fish Farm [3.8176219403982126]
Fish farm environments support the care and management of seafood within a controlled environment.
New technologies are constantly being implemented in this sector to enhance efficiency.
This study demonstrates a proof-of-concept to signify the efficiency and usability of the future fish farm.
arXiv Detail & Related papers (2023-01-02T21:41:06Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Applications of Deep Learning in Fish Habitat Monitoring: A Tutorial and
Survey [1.9249287163937976]
Deep learning (DL) is a cutting-edge AI technology that has demonstrated unprecedented performance in analysing visual data.
In this paper, we provide a tutorial that covers the key concepts of DL, which help the reader grasp a high-level understanding of how DL works.
The tutorial also explains a step-by-step procedure on how DL algorithms should be developed for challenging applications such as underwater fish monitoring.
arXiv Detail & Related papers (2022-06-11T01:59:54Z) - Tuna Nutriment Tracking using Trajectory Mapping in Application to
Aquaculture Fish Tank [0.0]
Estimating a state of fishes in a tank and adjusting an amount of nutriments play an important role to manage cost of fish feeding system.
Our approach is based on tracking nutriments on videos collected from an active aquaculture fish farm.
arXiv Detail & Related papers (2021-03-10T06:02:19Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z) - A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater
Visual Analysis [2.6476746128312194]
We present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks.
The dataset consists of approximately 40 thousand images collected underwater from 20 greenhabitats in the marine-environments of tropical Australia.
Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-28T12:20:59Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
We study a statistical and machine learning framework for the prediction of water pipe failures.
We use a dataset containing the failure records of all pipes within the water distribution network in Barcelona, Spain.
The results shed light on the effect of important risk factors, such as pipe geometry, age, material, and soil cover, among others.
arXiv Detail & Related papers (2020-07-02T19:08:36Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.