BRONCO: Automated modelling of the bronchovascular bundle using the
Computed Tomography Images
- URL: http://arxiv.org/abs/2309.09410v1
- Date: Mon, 18 Sep 2023 00:38:25 GMT
- Title: BRONCO: Automated modelling of the bronchovascular bundle using the
Computed Tomography Images
- Authors: Wojciech Pra\.zuch, Marek Socha, Anna Mrukwa, Aleksandra Suwalska,
Agata Durawa, Malgorzata Jelitto-G\'orska, Katarzyna Dziadziuszko, Edyta
Szurowska, Pawel Bo\.zek, Michal Marczyk, Witold Rzyman, Joanna Polanska
- Abstract summary: We propose a segmentation pipeline for the bronchovascular bundle based on Computed Tomography images.
We tested our method on both low-dose CT and standard-dose CT, with various pathologies, reconstructed with various slice thicknesses, and acquired from various machines.
- Score: 32.586316762855944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of the bronchovascular bundle within the lung parenchyma is a
key step for the proper analysis and planning of many pulmonary diseases. It
might also be considered the preprocessing step when the goal is to segment the
nodules from the lung parenchyma. We propose a segmentation pipeline for the
bronchovascular bundle based on the Computed Tomography images, returning
either binary or labelled masks of vessels and bronchi situated in the lung
parenchyma. The method consists of two modules, modeling of the bronchial tree
and vessels. The core revolves around a similar pipeline, the determination of
the initial perimeter by the GMM method, skeletonization, and hierarchical
analysis of the created graph. We tested our method on both low-dose CT and
standard-dose CT, with various pathologies, reconstructed with various slice
thicknesses, and acquired from various machines. We conclude that the method is
invariant with respect to the origin and parameters of the CT series. Our
pipeline is best suited for studies with healthy patients, patients with lung
nodules, and patients with emphysema.
Related papers
- Robust deep labeling of radiological emphysema subtypes using squeeze
and excitation convolutional neural networks: The MESA Lung and SPIROMICS
Studies [34.200556207264974]
Pulmonary emphysema is the progressive, irreversible loss of lung tissue.
Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (ss) on lung CT.
We present a robust 3-D squeeze-and-excitation model for supervised classification of ss CNNs and CTES on lung CT.
arXiv Detail & Related papers (2024-03-01T03:45:56Z) - MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography [37.119000111386924]
MEDPSeg learns from heterogeneous chest CT targets through hierarchical polymorphic multitask learning (HPML)
We show PML enabling new state-of-the-art performance for GGO and consolidation segmentation tasks.
In addition, MEDPSeg simultaneously performs segmentation of the lung parenchyma, airways, pulmonary artery, and lung lesions, all in a single forward prediction.
arXiv Detail & Related papers (2023-12-04T21:46:39Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer.
However, automatic reconstruction of pulmonary segments remains unexplored in the era of deep learning.
We propose ImPulSe, a deep implicit surface model designed for pulmonary segment reconstruction.
arXiv Detail & Related papers (2022-07-07T04:24:17Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
We propose a region and structure prior embedded framework named BronchusNet to achieve accurate bronchial analysis.
For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples.
For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module.
arXiv Detail & Related papers (2022-05-14T02:32:33Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Automatic Pulmonary Artery and Vein Separation Algorithm Based on
Multitask Classification Network and Topology Reconstruction in Chest CT
Images [6.7068805048290425]
We propose a novel method for automatic separation of pulmonary arteries and veins from chest CT images.
The proposed method achieves an average accuracy of 96.2% on noncontrast chest CT.
arXiv Detail & Related papers (2021-03-22T11:25:45Z) - Neural collaborative filtering for unsupervised mitral valve
segmentation in echocardiography [60.08918310097638]
We propose an automated and unsupervised method for the mitral valve segmentation based on a low dimensional embedding of the echocardiography videos.
The method is evaluated in a collection of echocardiography videos of patients with a variety of mitral valve diseases and on an independent test cohort.
It outperforms state-of-the-art emphunsupervised and emphsupervised methods on low-quality videos or in the case of sparse annotation.
arXiv Detail & Related papers (2020-08-13T12:53:26Z) - Segmentation of Pulmonary Opacification in Chest CT Scans of COVID-19
Patients [3.140265238474236]
We provide open source models for the segmentation of patterns of pulmonary opacification on chest Computed Tomography (CT) scans.
We have collected 663 chest CT scans of COVID-19 patients from healthcare centers around the world.
Our best model achieves an opacity Intersection-Over-Union score of 0.76 on our test set, demonstrates successful domain adaptation, and predicts the volume of opacification within 1.7% of expert radiologists.
arXiv Detail & Related papers (2020-07-07T17:32:24Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
We present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung.
Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation.
arXiv Detail & Related papers (2020-06-25T07:20:41Z) - Generative-based Airway and Vessel Morphology Quantification on Chest CT
Images [8.414072468546875]
We propose a Convolutional Neural Regressor (CNR) that provides cross-sectional measurement of airway lumens, airway wall thickness, and vessel radius.
CNR is trained with data created by a generative model of synthetic structures which is used in combination with Simulated and Unversa Generative Adrial Network (SimGAN)
For vessels, we assess the correlation between our estimate of the small-vessel blood volume and the lungs' diffusing capacity for carbon monoxide (DLCO)
arXiv Detail & Related papers (2020-02-13T18:45:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.