An Autonomous Vision-Based Algorithm for Interplanetary Navigation
- URL: http://arxiv.org/abs/2309.09590v3
- Date: Mon, 17 Jun 2024 22:17:54 GMT
- Title: An Autonomous Vision-Based Algorithm for Interplanetary Navigation
- Authors: Eleonora Andreis, Paolo Panicucci, Francesco Topputo,
- Abstract summary: Vision-based navigation algorithm is built by combining an orbit determination method with an image processing pipeline.
A novel analytical measurement model is developed providing a first-order approximation of the light-aberration and light-time effects.
Algorithm performance is tested on a high-fidelity, Earth--Mars interplanetary transfer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The surge of deep-space probes makes it unsustainable to navigate them with standard radiometric tracking. Self-driving interplanetary satellites represent a solution to this problem. In this work, a full vision-based navigation algorithm is built by combining an orbit determination method with an image processing pipeline suitable for interplanetary transfers of autonomous platforms. To increase the computational efficiency of the algorithm, a non-dimensional extended Kalman filter is selected as state estimator, fed by the positions of the planets extracted from deep-space images. An enhancement of the estimation accuracy is performed by applying an optimal strategy to select the best pair of planets to track. Moreover, a novel analytical measurement model for deep-space navigation is developed providing a first-order approximation of the light-aberration and light-time effects. Algorithm performance is tested on a high-fidelity, Earth--Mars interplanetary transfer, showing the algorithm applicability for deep-space navigation.
Related papers
- Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning [62.186340267690824]
Existing studies on geomagnetic navigation rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas.
This paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation.
The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches.
arXiv Detail & Related papers (2024-10-21T09:57:42Z) - Real-time Multi-view Omnidirectional Depth Estimation System for Robots and Autonomous Driving on Real Scenes [9.073031720400401]
We propose a robotic prototype system and corresponding algorithm designed to validate omnidirectional depth estimation for navigation and obstacle avoidance in real-world scenarios for both robots and vehicles.
We introduce a combined spherical sweeping method and optimize the model architecture for proposed RtHexa- OmniMVS algorithm to achieve real-time omnidirectional depth estimation.
The proposed algorithm demonstrates high accuracy in various complex real-world scenarios, both indoors and outdoors, achieving an inference speed of 15 fps on edge computing platforms.
arXiv Detail & Related papers (2024-09-12T08:44:35Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - An Image Processing Pipeline for Autonomous Deep-Space Optical
Navigation [0.0]
This paper proposes an innovative pipeline for unresolved beacon recognition and line-of-sight extraction from images for autonomous interplanetary navigation.
The developed algorithm exploits the k-vector method for the non-stellar object identification and statistical likelihood to detect whether any beacon projection is visible in the image.
arXiv Detail & Related papers (2023-02-14T09:06:21Z) - Construction of Object Boundaries for the Autopilotof a Surface Robot
from Satellite Imagesusing Computer Vision Methods [101.18253437732933]
A method for detecting water objects on satellite maps is proposed.
An algorithm for calculating the GPS coordinates of the contours is created.
The proposed algorithm allows saving the result in a format suitable for the surface robot autopilot module.
arXiv Detail & Related papers (2022-12-05T12:07:40Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
We propose an end-to-end active visual tracking method based on DQN algorithm, named as DRLAVT.
It can guide the chasing spacecraft approach to arbitrary space non-cooperative target merely relied on color or RGBD images.
It significantly outperforms position-based visual servoing baseline algorithm that adopts state-of-the-art 2D monocular tracker, SiamRPN.
arXiv Detail & Related papers (2021-12-18T06:12:24Z) - Deep Learning-based Spacecraft Relative Navigation Methods: A Survey [3.964047152162558]
This survey aims to investigate the current deep learning-based autonomous spacecraft relative navigation methods.
It focuses on concrete orbital applications such as spacecraft rendezvous and landing on small bodies or the Moon.
arXiv Detail & Related papers (2021-08-19T18:54:19Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Topological Sweep for Multi-Target Detection of Geostationary Space
Objects [43.539256589118644]
Our work focuses on the optical detection of man-made objects in Geostationary orbit (GEO)
GEO object detection is challenging due to the distance of the targets, which appear as small dim points among a clutter of bright stars.
We propose a novel multi-target detection technique based on topological sweep, to find GEO objects from a short sequence of optical images.
arXiv Detail & Related papers (2020-03-21T06:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.