A Study of Data-driven Methods for Adaptive Forecasting of COVID-19
Cases
- URL: http://arxiv.org/abs/2309.09698v1
- Date: Mon, 18 Sep 2023 12:03:01 GMT
- Title: A Study of Data-driven Methods for Adaptive Forecasting of COVID-19
Cases
- Authors: Charithea Stylianides, Kleanthis Malialis, Panayiotis Kolios
- Abstract summary: This work studies data-driven (learning, statistical) methods for incrementally training models to adapt to nonstationary conditions.
An empirical study is conducted to examine various characteristics, such as, performance analysis on a per virus wave basis, feature extraction, "lookback" window size, memory size, all for next-, 7-, and 14-day forecasting tasks.
- Score: 6.11718619764613
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Severe acute respiratory disease SARS-CoV-2 has had a found impact on public
health systems and healthcare emergency response especially with respect to
making decisions on the most effective measures to be taken at any given time.
As demonstrated throughout the last three years with COVID-19, the prediction
of the number of positive cases can be an effective way to facilitate
decision-making. However, the limited availability of data and the highly
dynamic and uncertain nature of the virus transmissibility makes this task very
challenging. Aiming at investigating these challenges and in order to address
this problem, this work studies data-driven (learning, statistical) methods for
incrementally training models to adapt to these nonstationary conditions. An
extensive empirical study is conducted to examine various characteristics, such
as, performance analysis on a per virus wave basis, feature extraction,
"lookback" window size, memory size, all for next-, 7-, and 14-day forecasting
tasks. We demonstrate that the incremental learning framework can successfully
address the aforementioned challenges and perform well during outbreaks,
providing accurate predictions.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Accounting For Informative Sampling When Learning to Forecast Treatment
Outcomes Over Time [66.08455276899578]
We show that informative sampling can prohibit accurate estimation of treatment outcomes if not properly accounted for.
We present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting.
We propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs.
arXiv Detail & Related papers (2023-06-07T08:51:06Z) - Discovering COVID-19 Coughing and Breathing Patterns from Unlabeled Data
Using Contrastive Learning with Varying Pre-Training Domains [3.935053618942546]
We propose a contrastive learning-based modeling approach for COVID-19 coughing and breathing pattern discovery from non-COVID coughs.
Our results show that the proposed model can effectively distinguish COVID-19 coughing and breathing from unlabeled data and labeled non-COVID coughs with an accuracy of up to 0.81 and 0.86.
arXiv Detail & Related papers (2023-06-02T18:41:39Z) - Adaptive Sequential Surveillance with Network and Temporal Dependence [1.7205106391379026]
Strategic test allocation plays a major role in the control of both emerging and existing pandemics.
Infectious disease surveillance presents unique statistical challenges.
We propose an Online Super Learner for adaptive sequential surveillance.
arXiv Detail & Related papers (2022-12-05T17:04:17Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
This study investigates how a suite of novel quasi-real-time variables can improve the forecasting models of patient flows.
The prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts.
arXiv Detail & Related papers (2022-11-01T20:42:26Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Forecasting Patient Demand at Urgent Care Clinics using Machine Learning [0.0]
This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand.
A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance.
The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.
arXiv Detail & Related papers (2022-05-25T22:27:49Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.