Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization
- URL: http://arxiv.org/abs/2309.09933v3
- Date: Fri, 27 Sep 2024 15:32:28 GMT
- Title: Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization
- Authors: Erick R. Castro, Eldues O. Martins, Roberto S. Sarthour, Alexandre M. Souza, Ivan S. Oliveira,
- Abstract summary: We propose a novel method for solving linear systems.
We transform the linear system into a binary optimization problem, drawing inspiration from the geometry of the original problem.
We demonstrate that by leveraging partial knowledge of the problem's intrinsic geometry, we can decompose the original problem into smaller, independent sub-problems.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in quantum computing and quantum-inspired algorithms have sparked renewed interest in binary optimization. These hardware and software innovations promise to revolutionize solution times for complex problems. In this work, we propose a novel method for solving linear systems. Our approach leverages binary optimization, making it particularly well-suited for problems with large condition numbers. We transform the linear system into a binary optimization problem, drawing inspiration from the geometry of the original problem and resembling the conjugate gradient method. This approach employs conjugate directions that significantly accelerate the algorithm's convergence rate. Furthermore, we demonstrate that by leveraging partial knowledge of the problem's intrinsic geometry, we can decompose the original problem into smaller, independent sub-problems. These sub-problems can be efficiently tackled using either quantum or classical solvers. While determining the problem's geometry introduces some additional computational cost, this investment is outweighed by the substantial performance gains compared to existing methods.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms [18.075115172621096]
We present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs via Ising solvers.
We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm.
arXiv Detail & Related papers (2022-07-27T16:47:32Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Improving quantum linear system solvers via a gradient descent
perspective [3.0969191504482247]
We revisit quantum linear system solvers from the perspective of convex optimization.
This leads to a considerable constant-factor iteration in the runtime.
We show how the optimal quantum linear system solver of Childs, Kothari, and Somma is related to the gradient descent algorithm.
arXiv Detail & Related papers (2021-09-09T13:16:28Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.