New Quantum Algorithm For Solving Linear System of Equations
- URL: http://arxiv.org/abs/2502.13630v1
- Date: Wed, 19 Feb 2025 11:08:56 GMT
- Title: New Quantum Algorithm For Solving Linear System of Equations
- Authors: Nhat A. Nghiem,
- Abstract summary: We introduce a new quantum algorithm for solving linear systems based on the gradient descent method.
Inspired by the vector/density state formalism, we represent a point, or vector, as a density state-like entity.
The operator corresponding to the intermediate solution is updated iteratively, with a provable guarantee of convergence.
- Score: 0.0
- License:
- Abstract: Linear equations play a pivotal role in many areas of science and engineering, making efficient solutions to linear systems highly desirable. The development of quantum algorithms for solving linear systems has been a significant breakthrough, with such algorithms rapidly becoming some of the most influential in quantum computing. Subsequent advances have focused on improving the efficiency of quantum linear solvers and extending their core techniques to address various challenges, such as least-squares data fitting. In this article, we introduce a new quantum algorithm for solving linear systems based on the gradient descent method. Inspired by the vector/density state formalism, we represent a point, or vector, as a density state-like entity, enabling us to leverage recent advancements in quantum algorithmic frameworks, such as block encoding, to directly manipulate operators and carry out the gradient descent method in a quantum setting. The operator corresponding to the intermediate solution is updated iteratively, with a provable guarantee of convergence. The quantum state representing the final solution to the linear system can then be extracted by further measurement. We provide a detailed complexity analysis and compare our approach with existing methods, demonstrating significant improvement in certain aspects.
Related papers
- Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - An Efficient Quantum Algorithm for Linear System Problem in Tensor Format [4.264200809234798]
We propose a quantum algorithm based on the recent advances on adiabatic-inspired QLSA.
We rigorously show that the total complexity of our implementation is polylogarithmic in the dimension.
arXiv Detail & Related papers (2024-03-28T20:37:32Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization [39.58317527488534]
We propose a novel method for solving linear systems.
We transform the linear system into a binary optimization problem, drawing inspiration from the geometry of the original problem.
We demonstrate that by leveraging partial knowledge of the problem's intrinsic geometry, we can decompose the original problem into smaller, independent sub-problems.
arXiv Detail & Related papers (2023-09-18T16:51:03Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology.
We perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection.
arXiv Detail & Related papers (2023-09-11T08:18:41Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Linear Solver with Dynamic Ansatz [0.0]
Variational quantum algorithms have found success in the NISQ era owing to their hybrid quantum-classical approach.
We introduce the dynamic ansatz in the Variational Quantum Linear Solver for a system of linear algebraic equations.
We demonstrate the algorithm advantage in comparison to the standard, static ansatz by utilizing fewer quantum resources.
arXiv Detail & Related papers (2021-07-19T03:42:25Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.