論文の概要: AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation
- arxiv url: http://arxiv.org/abs/2309.10109v1
- Date: Mon, 18 Sep 2023 19:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 17:50:25.571094
- Title: AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation
- Title(参考訳): AR-TTA: 実世界連続テスト時間適応のための簡易手法
- Authors: Damian S\'ojka, Sebastian Cygert, Bart{\l}omiej Twardowski and Tomasz
Trzci\'nski
- Abstract要約: 本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
提案手法はAR-TTAと呼ばれ、合成およびより現実的なベンチマークにおいて既存の手法よりも優れている。
- 参考スコア(独自算出の注目度): 16.85284386728494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test-time adaptation is a promising research direction that allows the source
model to adapt itself to changes in data distribution without any supervision.
Yet, current methods are usually evaluated on benchmarks that are only a
simplification of real-world scenarios. Hence, we propose to validate test-time
adaptation methods using the recently introduced datasets for autonomous
driving, namely CLAD-C and SHIFT. We observe that current test-time adaptation
methods struggle to effectively handle varying degrees of domain shift, often
resulting in degraded performance that falls below that of the source model. We
noticed that the root of the problem lies in the inability to preserve the
knowledge of the source model and adapt to dynamically changing, temporally
correlated data streams. Therefore, we enhance well-established self-training
framework by incorporating a small memory buffer to increase model stability
and at the same time perform dynamic adaptation based on the intensity of
domain shift. The proposed method, named AR-TTA, outperforms existing
approaches on both synthetic and more real-world benchmarks and shows
robustness across a variety of TTA scenarios.
- Abstract(参考訳): テスト時適応は、ソースモデルが監督なしでデータ配布の変化に適応できる有望な研究方向である。
しかし、現在の手法は通常、実際のシナリオを単純化したベンチマークで評価される。
そこで本研究では,最近導入された自律運転用データセットであるCLAD-CとShiFTを用いて,テスト時間適応手法を検証する。
現在のテスト時間適応手法は、ドメインシフトの度合いを効果的に扱うのに苦労しており、多くの場合、ソースモデルよりも劣る劣化したパフォーマンスをもたらす。
この問題の根源は、ソースモデルの知識を保存できず、動的に変化する時間的相関データストリームに適応できないことであることに気づきました。
そこで我々は,小さなメモリバッファを組み込んでモデル安定性を向上し,ドメインシフトの強度に基づいて動的適応を行うことにより,確立された自己学習フレームワークを強化する。
提案手法はAR-TTAと呼ばれ、合成およびより現実的なベンチマークにおいて既存の手法よりも優れ、様々なTTAシナリオにおいて堅牢性を示す。
関連論文リスト
- Enhancing Test Time Adaptation with Few-shot Guidance [35.13317598777832]
深層ニューラルネットワークは、トレーニング(ソース)とテスト(ターゲット)データのドメインシフトに直面しながら、大きなパフォーマンス低下に直面することが多い。
TTA(Test Time Adaptation)法は,事前学習したソースモデルを用いて,配信外ストリーミングターゲットデータを処理する手法として提案されている。
本稿では,Few-Shot Test Time Adaptation (FS-TTA) を開発した。
論文 参考訳(メタデータ) (2024-09-02T15:50:48Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - What, How, and When Should Object Detectors Update in Continually
Changing Test Domains? [34.13756022890991]
テストデータを推測しながらモデルをオンラインに適応させるテスト時適応アルゴリズムが提案されている。
連続的に変化するテスト領域におけるオブジェクト検出のための新しいオンライン適応手法を提案する。
提案手法は,広く使用されているベンチマークのベースラインを超え,最大4.9%,mAP7.9%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-12T07:13:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
相関に基づくステレオマッチングは優れた性能を達成した。
固定モデルによる現在のメソッドは、さまざまなデータセットで均一に動作しない。
本稿では,ロバストなステレオマッチングのための相関を動的に計算する新しい視点を提案する。
論文 参考訳(メタデータ) (2023-07-26T09:47:37Z) - Benchmarking Test-Time Adaptation against Distribution Shifts in Image
Classification [77.0114672086012]
テスト時間適応(TTA)は、予測時にのみラベルのないサンプルを活用することにより、モデルの一般化性能を向上させる技術である。
本稿では,広く使用されている5つの画像分類データセット上で,13のTTA手法とその変種を体系的に評価するベンチマークを提案する。
論文 参考訳(メタデータ) (2023-07-06T16:59:53Z) - RDumb: A simple approach that questions our progress in continual test-time adaptation [12.374649969346441]
テスト時間適応(TTA)では、事前トレーニングされたモデルをデプロイ時にデータ配布を変更するように更新することができる。
近年の長期にわたる連続的適応手法の提案と適用方法が提案されている。
最終的には、最先端の1つのメソッド以外はすべて崩壊し、非適応モデルよりもパフォーマンスが悪くなることに気付きました。
論文 参考訳(メタデータ) (2023-06-08T17:52:34Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。