GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus
- URL: http://arxiv.org/abs/2309.10173v2
- Date: Sun, 24 Sep 2023 15:32:09 GMT
- Title: GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus
- Authors: Maloy Kumar Devnath,
- Abstract summary: We present an innovative approach to intruder detection within the CAN bus, leveraging Graph Convolutional Network (GCN) techniques.
Our experimental findings substantiate that the proposed GCN-based method surpasses existing IDSs in terms of accuracy, precision, and recall.
Our proposed approach holds significant potential in fortifying the security and safety of modern vehicles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Controller Area Network (CAN) bus serves as a standard protocol for facilitating communication among various electronic control units (ECUs) within contemporary vehicles. However, it has been demonstrated that the CAN bus is susceptible to remote attacks, which pose risks to the vehicle's safety and functionality. To tackle this concern, researchers have introduced intrusion detection systems (IDSs) to identify and thwart such attacks. In this paper, we present an innovative approach to intruder detection within the CAN bus, leveraging Graph Convolutional Network (GCN) techniques as introduced by Zhang, Tong, Xu, and Maciejewski in 2019. By harnessing the capabilities of deep learning, we aim to enhance attack detection accuracy while minimizing the requirement for manual feature engineering. Our experimental findings substantiate that the proposed GCN-based method surpasses existing IDSs in terms of accuracy, precision, and recall. Additionally, our approach demonstrates efficacy in detecting mixed attacks, which are more challenging to identify than single attacks. Furthermore, it reduces the necessity for extensive feature engineering and is particularly well-suited for real-time detection systems. To the best of our knowledge, this represents the pioneering application of GCN to CAN data for intrusion detection. Our proposed approach holds significant potential in fortifying the security and safety of modern vehicles, safeguarding against attacks and preventing them from undermining vehicle functionality.
Related papers
- Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks [9.86830550255822]
Connected and Automated Vehicles (CAVs) on top of 5G and Beyond networks (5GB) make them vulnerable to increasing vectors of security and privacy attacks.
We propose in this paper a novel detection mechanism that leverages the ability of the deep auto-encoder method to detect attacks relying only on the benign network traffic pattern.
Using federated learning, the proposed intrusion detection system can be trained with large and diverse benign network traffic, while preserving the CAVs privacy, and minimizing the communication overhead.
arXiv Detail & Related papers (2024-07-03T12:42:31Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs [13.581341206178525]
This paper presents an unsupervised-learning-based convolutional autoencoder architecture for detecting zero-day attacks.
We quantise the model using Vitis-AI tools from AMD/Xilinx targeting a resource-constrained Zynq Ultrascale platform.
The proposed model successfully achieves equal or higher classification accuracy (> 99.5%) on unseen DoS, fuzzing, and spoofing attacks.
arXiv Detail & Related papers (2024-01-19T14:36:01Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network [6.68111081144141]
X-CANIDS dissects the payloads in CAN messages into human-understandable signals using a CAN database.
X-CANIDS can detect zero-day attacks because it does not require any labeled dataset in the training phase.
arXiv Detail & Related papers (2023-03-22T03:11:02Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
Modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks.
With the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically.
This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks.
arXiv Detail & Related papers (2022-05-07T03:38:26Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - Graph-Based Intrusion Detection System for Controller Area Networks [1.697297400355883]
The controller area network (CAN) is the most widely used intra-vehicular communication network in the automotive industry.
We propose a four-stage intrusion detection system that uses the chi-squared method and can detect any kind of strong and weak cyber attacks in a CAN.
Our experimental results show that we have a very low 5.26% misclassification for denial of service (DoS) attack, 10% misclassification for fuzzy attack, 4.76% misclassification for replay attack, and no misclassification for spoofing attack.
arXiv Detail & Related papers (2020-09-24T01:33:58Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.