論文の概要: An Empirical Study of Attention Networks for Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2309.10217v1
- Date: Tue, 19 Sep 2023 00:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 16:54:54.452235
- Title: An Empirical Study of Attention Networks for Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションのための注意ネットワークの実証的研究
- Authors: Hao Guo, Hongbiao Si, Guilin Jiang, Wei Zhang, Zhiyan Liu, Xuanyi Zhu,
Xulong Zhang, Yang Liu
- Abstract要約: 近年,注目度に基づくデコーダは,各種データセット上での最先端(SOTA)性能を実現している。
本稿ではまず,計算の複雑さを分析し,その性能を比較する実験を行う。
- 参考スコア(独自算出の注目度): 11.000308726481236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is a vital problem in computer vision. Recently, a
common solution to semantic segmentation is the end-to-end convolution neural
network, which is much more accurate than traditional methods.Recently, the
decoders based on attention achieve state-of-the-art (SOTA) performance on
various datasets. But these networks always are compared with the mIoU of
previous SOTA networks to prove their superiority and ignore their
characteristics without considering the computation complexity and precision in
various categories, which is essential for engineering applications. Besides,
the methods to analyze the FLOPs and memory are not consistent between
different networks, which makes the comparison hard to be utilized. What's
more, various methods utilize attention in semantic segmentation, but the
conclusion of these methods is lacking. This paper first conducts experiments
to analyze their computation complexity and compare their performance. Then it
summarizes suitable scenes for these networks and concludes key points that
should be concerned when constructing an attention network. Last it points out
some future directions of the attention network.
- Abstract(参考訳): セマンティックセグメンテーションはコンピュータビジョンにおいて重要な問題である。
近年、セマンティクスセグメンテーションに対する一般的な解決策は、エンドツーエンド畳み込みニューラルネットワークであり、従来の手法よりもはるかに正確であり、注意に基づくデコーダは、様々なデータセットで最先端(sota)性能を達成する。
しかし、これらのネットワークは常に従来のSOTAネットワークのmIoUと比較され、その優位性を証明し、様々なカテゴリの計算複雑性や精度を考慮せずに特性を無視する。
また、フロップとメモリを分析する手法は、異なるネットワーク間で一貫性がないため、比較の活用が困難である。
さらに、セマンティックセグメンテーションにおいて様々な手法が注目されているが、これらの手法の結論は乏しい。
本稿ではまず,計算の複雑さを分析し,性能を比較する実験を行う。
そして、これらのネットワークに適したシーンを要約し、注意ネットワークを構築する際に考慮すべき重要なポイントを結論付ける。
最後に、注意ネットワークの今後の方向性を指摘する。
関連論文リスト
- The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
我々は,未使用の重み付きネットワークがその後のタスクを学習するための方法論とネットワーク表現構造を同定する。
提案手法を用いてトレーニングされたネットワークは,タスクのパフォーマンスを犠牲にすることなく,あるいは破滅的な忘れを伴わずに,複数のタスクを学習できることを示す。
論文 参考訳(メタデータ) (2022-07-18T15:07:13Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - M-FasterSeg: An Efficient Semantic Segmentation Network Based on Neural
Architecture Search [0.0]
本稿では,ディープラーニングネットワークに基づくセマンティックセグメンテーションネットワークの改良構造を提案する。
まず、ニューラルネットワーク探索法NAS(Neural Architecture Search)を用いて、複数の解像度分岐を持つセマンティックセグメンテーションネットワークを求める。
検索プロセスでは、自己注意ネットワーク構造モジュールを結合して、探索したニューラルネットワーク構造を調整し、異なるブランチによって探索されたセマンティックセマンティックセマンティックネットワークを結合して、高速なセマンティックセマンティックセマンティックネットワーク構造を形成する。
論文 参考訳(メタデータ) (2021-12-15T06:46:55Z) - CI-Net: Contextual Information for Joint Semantic Segmentation and Depth
Estimation [2.8785764686013837]
本稿では,その問題を解決するために,文脈情報(CI-Net)を注入したネットワークを提案する。
セマンティックラベルの監督により、ネットワークにはコンテキスト情報が埋め込まれており、シーンをよりよく理解することができる。
提案したCI-NetをNYU-Depth-v2およびSUN-RGBDデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-29T07:58:25Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - Training and Inference for Integer-Based Semantic Segmentation Network [18.457074855823315]
セグメンテーションネットワークのトレーニングと推論のための新しい量子化フレームワークを提案する。
我々のフレームワークはFCN-VGG16やDeepLabv3-ResNet50のような主流セマンティックセマンティクスネットワークで評価されている。
論文 参考訳(メタデータ) (2020-11-30T02:07:07Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Boosting Connectivity in Retinal Vessel Segmentation via a Recursive
Semantics-Guided Network [23.936946593048987]
U字型ネットワークはセマンティクス誘導モジュールを導入して拡張され、拡張されたセマンティクス情報を浅い層に統合し、ネットワークがより強力な機能を探索できるようにする。
慎重に設計されたセマンティクス誘導ネットワークは、いくつかの公開データセットで広く評価されている。
論文 参考訳(メタデータ) (2020-04-24T09:18:04Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。