論文の概要: Boosting Connectivity in Retinal Vessel Segmentation via a Recursive
Semantics-Guided Network
- arxiv url: http://arxiv.org/abs/2004.12776v1
- Date: Fri, 24 Apr 2020 09:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 04:09:46.234205
- Title: Boosting Connectivity in Retinal Vessel Segmentation via a Recursive
Semantics-Guided Network
- Title(参考訳): Recursive Semantics-Guided Networkによる網膜血管セグメンテーションの接続性向上
- Authors: Rui Xu and Tiantian Liu and Xinchen Ye and Yen-Wei Chen
- Abstract要約: U字型ネットワークはセマンティクス誘導モジュールを導入して拡張され、拡張されたセマンティクス情報を浅い層に統合し、ネットワークがより強力な機能を探索できるようにする。
慎重に設計されたセマンティクス誘導ネットワークは、いくつかの公開データセットで広く評価されている。
- 参考スコア(独自算出の注目度): 23.936946593048987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many deep learning based methods have been proposed for retinal vessel
segmentation, however few of them focus on the connectivity of segmented
vessels, which is quite important for a practical computer-aided diagnosis
system on retinal images. In this paper, we propose an efficient network to
address this problem. A U-shape network is enhanced by introducing a
semantics-guided module, which integrates the enriched semantics information to
shallow layers for guiding the network to explore more powerful features.
Besides, a recursive refinement iteratively applies the same network over the
previous segmentation results for progressively boosting the performance while
increasing no extra network parameters. The carefully designed recursive
semantics-guided network has been extensively evaluated on several public
datasets. Experimental results have shown the efficiency of the proposed
method.
- Abstract(参考訳): 網膜血管のセグメンテーションのための深層学習に基づく多くの手法が提案されているが、網膜画像の実用的なコンピュータ支援診断システムにおいて非常に重要であるセグメンテーションされた血管の接続性に焦点を当てているものはほとんどない。
本稿では,この問題に対処する効率的なネットワークを提案する。
u字型ネットワークは、より強力な機能を探索するためにネットワークを導くために、浅い層に拡張されたセマンティクス情報を統合するセマンティクスガイドモジュールを導入することで強化される。
さらに、再帰的改良は、前回のセグメンテーション結果よりも同じネットワークを反復的に適用し、追加のネットワークパラメータを増加させながら、パフォーマンスを漸進的に向上させる。
慎重に設計された再帰的セマンティクス誘導ネットワークは、いくつかの公開データセットで広く評価されている。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
本稿では,MDFI-Net という DPCN に基づく機能拡張型インタラクションネットワークを提案する。
提案したMDFI-Netは,公開データセットの最先端手法よりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2024-10-20T16:42:22Z) - Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
本稿では「クラッチ」ネットワーク接続を選択的に導入し、高密度デコードネットワーク(ddn)を提案する。
ネットワークデコーダの各アップサンプリングステージにおける「クラッチ」接続により、ターゲットのローカライゼーションが向上する。
また、適応的な深層監視(ads)に基づくトレーニング戦略を提案し、入力データセットの特定の属性を利用して適応する。
論文 参考訳(メタデータ) (2024-02-05T00:44:57Z) - An Empirical Study of Attention Networks for Semantic Segmentation [11.000308726481236]
近年,注目度に基づくデコーダは,各種データセット上での最先端(SOTA)性能を実現している。
本稿ではまず,計算の複雑さを分析し,その性能を比較する実験を行う。
論文 参考訳(メタデータ) (2023-09-19T00:07:57Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
そこで本研究では,クロスタスク知識蒸留による単眼深度の自己指導的訓練を改善する手法を提案する。
トレーニングでは,事前訓練されたセマンティックセグメンテーション教師ネットワークを使用し,そのセマンティック知識を深度ネットワークに転送する。
提案手法の有効性をKITTIベンチマークで評価し,最新技術と比較した。
論文 参考訳(メタデータ) (2021-10-24T19:47:14Z) - Clustering-Based Interpretation of Deep ReLU Network [17.234442722611803]
我々はReLU関数の非線形挙動が自然なクラスタリングを引き起こすことを認識している。
本稿では,完全連結フィードフォワードReLUニューラルネットワークの解釈可能性を高める手法を提案する。
論文 参考訳(メタデータ) (2021-10-13T09:24:11Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
本稿では,様々な複雑な構造に応用可能な汎用チャネルプルーニング手法を提案する。
我々は、単一チャネルと結合チャネルの重要性を評価するために、フィッシャー情報に基づく統一されたメトリクスを導出する。
提案手法は,結合チャネルを含む任意の構造をプルークするために利用できる。
論文 参考訳(メタデータ) (2021-08-02T08:21:44Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Densely Connected Recurrent Residual (Dense R2UNet) Convolutional Neural
Network for Segmentation of Lung CT Images [0.342658286826597]
本稿では,U-Netモデルアーキテクチャに基づくリカレントCNN,Residual Network,Dense Convolutional Networkの合成について述べる。
ベンチマークLung Lesionデータセットで検証したモデルでは、同等のモデルよりもセグメンテーションタスクのパフォーマンスが向上した。
論文 参考訳(メタデータ) (2021-02-01T06:34:10Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。