論文の概要: Dive Deeper into Rectifying Homography for Stereo Camera Online
Self-Calibration
- arxiv url: http://arxiv.org/abs/2309.10314v4
- Date: Mon, 4 Mar 2024 01:43:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 23:24:11.028734
- Title: Dive Deeper into Rectifying Homography for Stereo Camera Online
Self-Calibration
- Title(参考訳): ステレオカメラオンライン自己診断のための修正ホモグラフィについて
- Authors: Hongbo Zhao, Yikang Zhang, Qijun Chen, Rui Fan
- Abstract要約: ステレオカメラのためのオンライン自己校正アルゴリズムを開発した。
外部パラメータ推定のロバスト性と精度を定量化するための4つの新しい評価指標を提案する。
私たちのソースコード、デモビデオ、サプリメントは、mias.group/StereoCalibratorで公開されています。
- 参考スコア(独自算出の注目度): 18.089940434364234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate estimation of stereo camera extrinsic parameters is the key to
guarantee the performance of stereo matching algorithms. In prior arts, the
online self-calibration of stereo cameras has commonly been formulated as a
specialized visual odometry problem, without taking into account the principles
of stereo rectification. In this paper, we first delve deeply into the concept
of rectifying homography, which serves as the cornerstone for the development
of our novel stereo camera online self-calibration algorithm, for cases where
only a single pair of images is available. Furthermore, we introduce a simple
yet effective solution for global optimum extrinsic parameter estimation in the
presence of stereo video sequences. Additionally, we emphasize the
impracticality of using three Euler angles and three components in the
translation vectors for performance quantification. Instead, we introduce four
new evaluation metrics to quantify the robustness and accuracy of extrinsic
parameter estimation, applicable to both single-pair and multi-pair cases.
Extensive experiments conducted across indoor and outdoor environments using
various experimental setups validate the effectiveness of our proposed
algorithm. The comprehensive evaluation results demonstrate its superior
performance in comparison to the baseline algorithm. Our source code, demo
video, and supplement are publicly available at mias.group/StereoCalibrator.
- Abstract(参考訳): ステレオカメラの外部パラメータの正確な推定がステレオマッチングアルゴリズムの性能を保証する鍵となる。
先行技術では、ステレオカメラのオンライン自己校正は、ステレオ整流の原理を考慮せずに、特殊な視覚オドメトリー問題として定式化されている。
本稿では,1対のイメージしか利用できない場合において,新しいステレオカメラオンライン自己校正アルゴリズムの開発の基礎となる,ホモグラフィの整流化という概念を初めて深く掘り下げた。
さらに,ステレオ映像列の存在下でのグローバル最適extrinsicパラメータ推定のための簡易かつ効果的な解法を提案する。
さらに,3つのオイラー角と3つの変換ベクトルを用いた性能定量化の非現実性を強調した。
そこで本研究では,外因性パラメータ推定のロバスト性と精度を定量化する4つの新しい評価指標を提案する。
提案手法の有効性を検証するため,各種実験装置を用いた室内および屋外の広範囲な実験を行った。
総合評価結果は,ベースラインアルゴリズムと比較して優れた性能を示した。
ソースコード、デモビデオ、サプリメントはmias.group/stereocalibratorで公開されている。
関連論文リスト
- Single-image camera calibration with model-free distortion correction [0.0]
本稿では,センサ全体をカバーする平面スペックルパターンの単一画像から,キャリブレーションパラメータの完全な集合を推定する方法を提案する。
デジタル画像相関を用いて校正対象の画像点と物理点との対応を求める。
プロシージャの最後には、画像全体にわたって、密度が高く均一なモデルフリーな歪みマップが得られる。
論文 参考訳(メタデータ) (2024-03-02T16:51:35Z) - SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets [65.64958606221069]
マルチカメラシステムは、360ドル周の知覚を達成するために、しばしば自律走行に使用される。
360ドル(約3万3000円)のカメラセットは、しばしば制限または低品質のオーバーラップ領域を持ち、画像全体に対してマルチビューステレオメソッドを実現する。
重なりの重なりに多視点ステレオ結果を明示的に利用することにより、全画像の深さ推定を強化するステレオガイド深度推定法(SGDE)を提案する。
論文 参考訳(メタデータ) (2024-02-19T02:41:37Z) - Match and Locate: low-frequency monocular odometry based on deep feature
matching [0.65268245109828]
本稿では,1台のカメラしか必要としないロボットオドメトリーの新たなアプローチを提案する。
アプローチは、深い特徴マッチングモデルを用いて、ビデオストリームの連続フレーム間の画像特徴のマッチングに基づいている。
本研究では,AISG-SLAビジュアルローカライゼーションチャレンジにおける手法の性能評価を行い,計算効率が高く,実装が容易であるにもかかわらず,競合する結果が得られた。
論文 参考訳(メタデータ) (2023-11-16T17:32:58Z) - PS-Transformer: Learning Sparse Photometric Stereo Network using
Self-Attention Mechanism [4.822598110892846]
線形プロジェクションや最大プーリングといった事前定義された操作に基づいて、異なる照明下での深いキャリブレーションされた光度ステレオネットワークの観測を集約する。
この問題に対処するために,PS-Transformer という,複雑な画像間相互作用を適切に捉えるために,学習可能な自己認識機構を活用する,細かなキャリブレーションを施した光度ステレオネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-21T11:58:25Z) - Degradation-agnostic Correspondence from Resolution-asymmetric Stereo [96.03964515969652]
テレワイドカメラシステムで取得した解像度の異なる2枚の画像からステレオマッチングの問題を考察する。
特徴量整合性という画像空間の代わりに特徴空間に2つのビュー間の整合性を課すことを提案する。
測光損失をトレーニングしたステレオマッチングネットワークは最適ではないが, 特徴抽出器は劣化に依存しない, マッチング特有の特徴を生成できる。
論文 参考訳(メタデータ) (2022-04-04T12:24:34Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
汎用カメラモデルの効率的なファミリーを用いてシーケンスごとのキャリブレーションパラメータを回帰する学習アルゴリズムを提案する。
提案手法は,サブピクセル再投射誤差による自己校正を行い,他の学習手法よりも優れる。
論文 参考訳(メタデータ) (2021-12-06T19:42:05Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Robust 360-8PA: Redesigning The Normalized 8-point Algorithm for 360-FoV
Images [53.11097060367591]
球面投影における360-fov画像から本質行列を推定する新しい手法を提案する。
我々の正規化は、時間を大幅に上回ることなく、カメラの精度を約20%向上させることができることを示す。
論文 参考訳(メタデータ) (2021-04-22T07:23:11Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z) - Correcting Decalibration of Stereo Cameras in Self-Driving Vehicles [0.0]
移動体ステレオカメラの光学的校正の問題点を、特に自動運転車の文脈で解決する。
本手法はカメラ形状パラメータの最適化に基づいて,ステレオマッチングアルゴリズムの出力に直接プラグインする。
シミュレーションにより,ステレオ推定と並列に連続的に動作できることが確認され,システムのキャリブレーションをリアルタイムに維持できることがわかった。
論文 参考訳(メタデータ) (2020-01-15T12:28:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。