論文の概要: Match and Locate: low-frequency monocular odometry based on deep feature
matching
- arxiv url: http://arxiv.org/abs/2311.10034v1
- Date: Thu, 16 Nov 2023 17:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 13:28:22.884354
- Title: Match and Locate: low-frequency monocular odometry based on deep feature
matching
- Title(参考訳): match and location: 深部特徴マッチングに基づく低周波単眼オドメトリ
- Authors: Stepan Konev, Yuriy Biktairov
- Abstract要約: 本稿では,1台のカメラしか必要としないロボットオドメトリーの新たなアプローチを提案する。
アプローチは、深い特徴マッチングモデルを用いて、ビデオストリームの連続フレーム間の画像特徴のマッチングに基づいている。
本研究では,AISG-SLAビジュアルローカライゼーションチャレンジにおける手法の性能評価を行い,計算効率が高く,実装が容易であるにもかかわらず,競合する結果が得られた。
- 参考スコア(独自算出の注目度): 0.65268245109828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and robust pose estimation plays a crucial role in many robotic
systems. Popular algorithms for pose estimation typically rely on high-fidelity
and high-frequency signals from various sensors. Inclusion of these sensors
makes the system less affordable and much more complicated. In this work we
introduce a novel approach for the robotic odometry which only requires a
single camera and, importantly, can produce reliable estimates given even
extremely low-frequency signal of around one frame per second. The approach is
based on matching image features between the consecutive frames of the video
stream using deep feature matching models. The resulting coarse estimate is
then adjusted by a convolutional neural network, which is also responsible for
estimating the scale of the transition, otherwise irretrievable using only the
feature matching information. We evaluate the performance of the approach in
the AISG-SLA Visual Localisation Challenge and find that while being
computationally efficient and easy to implement our method shows competitive
results with only around $3^{\circ}$ of orientation estimation error and $2m$
of translation estimation error taking the third place in the challenge.
- Abstract(参考訳): 多くのロボットシステムにおいて、正確で堅牢なポーズ推定が重要な役割を果たす。
一般的なポーズ推定アルゴリズムは、様々なセンサからの高忠実度および高周波信号に依存する。
これらのセンサーを組み込むことで、システムは安価でより複雑になる。
本研究では,1台のカメラしか必要とせず,毎秒1フレーム程度の超低周波信号であっても,信頼性の高い推定値が得られるロボットオーソメトリの新しい手法を提案する。
アプローチは、深い特徴マッチングモデルを用いて、ビデオストリームの連続フレーム間の画像特徴のマッチングに基づいている。
結果として得られた粗い推定は畳み込みニューラルネットワークによって調整され、これは遷移の規模を推定する責任も負う。
本研究では,AISG-SLAビジュアルローカライゼーションチャレンジにおける手法の性能評価を行い,計算効率が高く,実装が容易である一方で,約$3^{\circ} の向き推定誤差と$2mの翻訳推定誤差が課題の3位であることを示す。
関連論文リスト
- SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning [17.99904937160487]
本研究では,教師なし深層学習のための空間的手がかりを取り入れた新しいアプローチであるSCIPaDを紹介する。
SCIPaDは平均翻訳誤差22.2%、カメラポーズ推定タスクの平均角誤差34.8%をKITTI Odometryデータセットで達成している。
論文 参考訳(メタデータ) (2024-07-07T06:52:51Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model [3.580983453285039]
複数の干渉下で入力に対して高いサブピクセル精度を維持することができる新しい検出アルゴリズムを提案する。
アルゴリズム全体は粗い戦略を採用しており、Xコーン検出ネットワークと3つの後処理技術を含んでいる。
実画像および合成画像の評価は,提案アルゴリズムが他の一般的な手法よりも検出率,サブピクセル精度,ロバスト性が高いことを示す。
論文 参考訳(メタデータ) (2023-07-07T10:40:41Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - HHP-Net: A light Heteroscedastic neural network for Head Pose estimation
with uncertainty [2.064612766965483]
そこで,本研究では,頭部キーポイントの小さなセットから始まる,単一画像中の人物の頭部ポーズを推定する新しい手法を提案する。
私たちのモデルは実装が簡単で、芸術の状況に関してより効率的です。
論文 参考訳(メタデータ) (2021-11-02T08:55:45Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
自己監督学習に基づくマルチフレーム一眼的シーンフローネットワークを導入。
自己監督学習に基づく単眼的シーンフロー法における最新の精度を観察する。
論文 参考訳(メタデータ) (2021-05-05T17:49:55Z) - Lite-FPN for Keypoint-based Monocular 3D Object Detection [18.03406686769539]
keypointベースのモノクロ3dオブジェクト検出は、非常に進歩し、高い速度精度のトレードオフを達成した。
マルチスケール機能融合を実現する軽量機能ピラミッドネットワークLite-FPNを提案します。
提案手法は,高い精度とフレームレートを同時に達成する。
論文 参考訳(メタデータ) (2021-05-01T14:44:31Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。