論文の概要: A Cognitively-Inspired Neural Architecture for Visual Abstract Reasoning
Using Contrastive Perceptual and Conceptual Processing
- arxiv url: http://arxiv.org/abs/2309.10532v2
- Date: Thu, 21 Sep 2023 01:42:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 11:40:26.705709
- Title: A Cognitively-Inspired Neural Architecture for Visual Abstract Reasoning
Using Contrastive Perceptual and Conceptual Processing
- Title(参考訳): コントラスト知覚と概念処理を用いた視覚抽象推論のための認知的インスパイアニューラルアーキテクチャ
- Authors: Yuan Yang, Deepayan Sanyal, James Ainooson, Joel Michelson, Effat
Farhana, Maithilee Kunda
- Abstract要約: 人間の認知に触発された視覚的抽象的推論タスクを解決するための新しいニューラルアーキテクチャを提案する。
この原則にインスパイアされたアーキテクチャは、反復的で自己コントラストの学習プロセスとして、視覚的抽象的推論をモデル化します。
機械学習データセットRAVENの実験は、CPCNetが以前公開されたすべてのモデルよりも高い精度を達成することを示している。
- 参考スコア(独自算出の注目度): 14.201935774784632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new neural architecture for solving visual abstract reasoning
tasks inspired by human cognition, specifically by observations that human
abstract reasoning often interleaves perceptual and conceptual processing as
part of a flexible, iterative, and dynamic cognitive process. Inspired by this
principle, our architecture models visual abstract reasoning as an iterative,
self-contrasting learning process that pursues consistency between perceptual
and conceptual processing of visual stimuli. We explain how this new
Contrastive Perceptual-Conceptual Network (CPCNet) works using matrix reasoning
problems in the style of the well-known Raven's Progressive Matrices
intelligence test. Experiments on the machine learning dataset RAVEN show that
CPCNet achieves higher accuracy than all previously published models while also
using the weakest inductive bias. We also point out a substantial and
previously unremarked class imbalance in the original RAVEN dataset, and we
propose a new variant of RAVEN -- AB-RAVEN -- that is more balanced in terms of
abstract concepts.
- Abstract(参考訳): 特に,人間の抽象的推論は,柔軟で反復的でダイナミックな認知プロセスの一部として知覚的,概念的処理をしばしばインターリーブするという観察から,視覚的抽象的推論タスクを解決するための新しいニューラルアーキテクチャを導入する。
この原理に着想を得たアーキテクチャは、視覚刺激の知覚的処理と概念的処理の一貫性を追求する反復的自己コントラスト学習プロセスとして視覚的抽象的推論をモデル化する。
この新たなコントラスト知覚ネットワーク(CPCNet)は,有名なRavenのプログレッシブ・マトリクス・インテリジェンス・テスト(Progressive Matrices Intelligence Test)のスタイルで,行列推論問題を用いてどのように機能するかを説明する。
機械学習データセット RAVEN の実験では、CPCNet がこれまでに公開されたすべてのモデルよりも高い精度を達成し、最も弱い帰納バイアスを使用している。
我々はまた、元のRAVENデータセットにおいて、実質的で以前に言及されていないクラス不均衡を指摘し、抽象概念の観点からよりバランスのとれたRAVENの新たな変種であるAB-RAVENを提案する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - The Relational Bottleneck as an Inductive Bias for Efficient Abstraction [3.19883356005403]
ニューラルネットワークはアーキテクチャを通して、個々の入力の属性ではなく、知覚的入力間の関係に焦点を絞っていることを示す。
データ効率のよい方法で抽象化を誘導するために、このアプローチを用いたモデルのファミリーをレビューする。
論文 参考訳(メタデータ) (2023-09-12T22:44:14Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [18.82429807065658]
微分フォワード推論は、勾配に基づく機械学習パラダイムと推論を統合するために開発された。
NEUMANNはグラフベースの微分可能フォワード推論器で、メッセージをメモリ効率のよい方法で送信し、構造化プログラムを関手で処理する。
NEUMANNは視覚的推論タスクを効率的に解き、神経、象徴的、神経-象徴的ベースラインを上回ります。
論文 参考訳(メタデータ) (2023-07-03T11:02:40Z) - Concept-Based Explanations for Tabular Data [0.0]
ディープニューラルネットワーク(DNN)のための概念に基づく説明可能性を提案する。
本研究では,人間レベルの直観に合致する解釈可能性を示す手法の有効性を示す。
また,DNNのどの層がどの層を学習したのかを定量化したTCAVに基づく公平性の概念を提案する。
論文 参考訳(メタデータ) (2022-09-13T02:19:29Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
本研究では,コモンセンス推論における概念化の役割について検討し,人間の概念化を再現する枠組みを定式化する。
ATOMIC は大規模な人為的注釈付き CKG であり,この枠組みを分類プロベースで支援している。
論文 参考訳(メタデータ) (2022-06-03T12:24:49Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
本稿では,創造性に関する認知理論に触発された計算モデル(AIGenC)を紹介する。
人工エージェントが変換可能な表現を学習、使用、生成するために必要なコンポーネントを配置する。
本稿では, 人工エージェントの配当効率を向上するモデルの有効性について論じる。
論文 参考訳(メタデータ) (2022-05-19T17:43:31Z) - Learning Algebraic Representation for Systematic Generalization in
Abstract Reasoning [109.21780441933164]
推論における体系的一般化を改善するためのハイブリッドアプローチを提案する。
我々はRaven's Progressive Matrices (RPM) の抽象的空間時間課題に対する代数的表現を用いたプロトタイプを紹介する。
得られた代数的表現は同型によって復号化して解を生成することができることを示す。
論文 参考訳(メタデータ) (2021-11-25T09:56:30Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
視覚的推論における概念誘導の問題,すなわち,画像に関連付けられた質問応答対から概念とその階層的関係を同定する。
我々はまず,オブジェクトレベルの視覚的特徴を持つ視覚的推論タスクを実行するために,オブジェクト指向合成注意モデル(OCCAM)という新しいフレームワークを設計する。
そこで我々は,対象の視覚的特徴と質問語の間の注意パターンから手がかりを用いて,対象と関係の概念を誘導する手法を考案した。
論文 参考訳(メタデータ) (2020-11-23T18:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。