論文の概要: Concept-Based Explanations for Tabular Data
- arxiv url: http://arxiv.org/abs/2209.05690v1
- Date: Tue, 13 Sep 2022 02:19:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 12:30:07.163715
- Title: Concept-Based Explanations for Tabular Data
- Title(参考訳): 概念に基づく語彙データの記述
- Authors: Varsha Pendyala and Jihye Choi
- Abstract要約: ディープニューラルネットワーク(DNN)のための概念に基づく説明可能性を提案する。
本研究では,人間レベルの直観に合致する解釈可能性を示す手法の有効性を示す。
また,DNNのどの層がどの層を学習したのかを定量化したTCAVに基づく公平性の概念を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The interpretability of machine learning models has been an essential area of
research for the safe deployment of machine learning systems. One particular
approach is to attribute model decisions to high-level concepts that humans can
understand. However, such concept-based explainability for Deep Neural Networks
(DNNs) has been studied mostly on image domain. In this paper, we extend TCAV,
the concept attribution approach, to tabular learning, by providing an idea on
how to define concepts over tabular data. On a synthetic dataset with
ground-truth concept explanations and a real-world dataset, we show the
validity of our method in generating interpretability results that match the
human-level intuitions. On top of this, we propose a notion of fairness based
on TCAV that quantifies what layer of DNN has learned representations that lead
to biased predictions of the model. Also, we empirically demonstrate the
relation of TCAV-based fairness to a group fairness notion, Demographic Parity.
- Abstract(参考訳): 機械学習モデルの解釈可能性は、機械学習システムの安全なデプロイに欠かせない研究領域である。
特定のアプローチの1つは、モデル決定を人間が理解できるハイレベルな概念に分類することです。
しかし、このような概念に基づく深層ニューラルネットワーク(dnn)の解説は、主に画像領域で研究されている。
本稿では,表型データに対する概念定義の考え方を提供することで,表型学習への帰属的アプローチであるTCAVを拡張した。
基礎概念と実世界のデータセットを備えた合成データセットにおいて,人間レベルの直観にマッチする解釈可能性結果を生成する際に,本手法の有効性を示す。
これに加えて,dnn のどの層がモデルに偏りのある予測をもたらす表現を学習したかを定量化する tcav に基づく公平性の概念を提案する。
また,TCAVに基づくフェアネスとグループフェアネスの概念であるデモグラフィックパリティとの関係を実証的に示す。
関連論文リスト
- CoLiDR: Concept Learning using Aggregated Disentangled Representations [29.932706137805713]
概念に基づくモデルを用いたディープニューラルネットワークの解釈可能性は、人間の理解可能な概念を通じてモデルの振る舞いを説明する有望な方法を提供する。
並列的な研究は、データ分散をその基盤となる生成因子に切り離し、データ生成プロセスを説明することに重点を置いている。
どちらの方向も広く注目されているが、数学的に不整合な表現と人間の理解可能な概念を統一するための生成的要因の観点から概念を説明する研究はほとんど行われていない。
論文 参考訳(メタデータ) (2024-07-27T16:55:14Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
概念に基づく説明可能なAIは、あるユーザの前提における複雑なモデルの理解を改善するツールとして期待されている。
本稿では,テキスト領域と画像領域の両方でユーザ主導のデータ収集を行うワークフローを提案する。
我々は,概念アクティベーションベクトル(CAV)と概念アクティベーション領域(CAR)の2つの概念ベース説明可能性手法を用いて,検索した概念データセットをテストする。
論文 参考訳(メタデータ) (2024-04-10T13:47:22Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
人間の解釈可能な概念をデータから学習する方法を研究する。
両分野からアイデアをまとめ、多様なデータから概念を確実に回収できることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:23:59Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
コンバージェンス(収束)の証拠として,概念の上位1万個の画像を取り除き,モデルの再トレーニングを行うと,ネットワーク内の概念の位置が変化しない。
このことは、概念の発達を知らせる特徴が、概念形成の堅牢さを暗示して、その先例にまたがるより拡散した方法で広がることを示唆している。
論文 参考訳(メタデータ) (2023-10-04T20:26:59Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
概念に基づく説明は、特徴帰属推定よりも解釈可能な優れたアプローチとして現れてきた。
本稿では,訓練中に深層モデルから学んだ概念を自動的に発見するポストホックな教師なし手法を提案する。
実験の結果、我々の概念の大部分は、人間にとって容易に理解でき、一貫性を示し、目の前の課題に関連があることが判明した。
論文 参考訳(メタデータ) (2023-07-13T17:21:54Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
eXplainable Artificial Intelligence(XAI)の分野は、今日の強力だが不透明なディープラーニングモデルに透明性をもたらすことを目指している。
局所的なXAI手法は属性マップの形で個々の予測を説明するが、グローバルな説明手法はモデルが一般的にエンコードするために学んだ概念を視覚化する。
論文 参考訳(メタデータ) (2022-06-07T12:05:58Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
このレポートは、表現学習が生データから概念を誘導する方法を示しています。
このレポートの主な技術的目標は、表現学習のテクニックが概念空間の格子理論的定式化とどのように結婚できるかを示すことである。
論文 参考訳(メタデータ) (2021-01-13T15:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。