論文の概要: NDDepth: Normal-Distance Assisted Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2309.10592v2
- Date: Sun, 24 Sep 2023 14:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 22:44:07.189523
- Title: NDDepth: Normal-Distance Assisted Monocular Depth Estimation
- Title(参考訳): NDDepth: 通常距離支援単眼深度推定
- Authors: Shuwei Shao, Zhongcai Pei, Weihai Chen, Xingming Wu and Zhengguo Li
- Abstract要約: 単眼深度推定のための新しい物理(幾何学)駆動深度学習フレームワークを提案する。
そこで我々は,各位置における深度を導出するために,画素レベル表面の正規化と平面-オリジン距離を出力する新しい正規距離ヘッドを提案する。
我々は,深度不確実性に応じて相補的に深度を洗練する効果的なコントラッシブ・イテレーティブ・リファインメント・モジュールを開発した。
- 参考スコア(独自算出の注目度): 22.37113584192617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular depth estimation has drawn widespread attention from the vision
community due to its broad applications. In this paper, we propose a novel
physics (geometry)-driven deep learning framework for monocular depth
estimation by assuming that 3D scenes are constituted by piece-wise planes.
Particularly, we introduce a new normal-distance head that outputs pixel-level
surface normal and plane-to-origin distance for deriving depth at each
position. Meanwhile, the normal and distance are regularized by a developed
plane-aware consistency constraint. We further integrate an additional depth
head to improve the robustness of the proposed framework. To fully exploit the
strengths of these two heads, we develop an effective contrastive iterative
refinement module that refines depth in a complementary manner according to the
depth uncertainty. Extensive experiments indicate that the proposed method
exceeds previous state-of-the-art competitors on the NYU-Depth-v2, KITTI and
SUN RGB-D datasets. Notably, it ranks 1st among all submissions on the KITTI
depth prediction online benchmark at the submission time.
- Abstract(参考訳): 単眼深度の推定は、その幅広い応用により、視覚コミュニティから広く注目を集めている。
本稿では,3次元シーンが分割平面で構成されていると仮定して,単眼深度推定のための新しい物理(ジオメトリ)駆動深層学習フレームワークを提案する。
特に,各位置における深度を導出するための画素レベル表面の正規化と平面-オリジン距離を出力する新しい正規距離ヘッドを導入する。
一方、標準と距離は、発達した平面認識整合性制約によって正規化される。
さらに,提案フレームワークのロバスト性を改善するために,さらに奥行きヘッドを統合する。
この2つの頭部の強みを十分に活用するために, 深さの不確かさに応じて奥行きを相補的に洗練する効果的な対比的反復改良モジュールを開発した。
大規模な実験により,提案手法は,NYU-Depth-v2,KITTI,SUN RGB-Dデータセット上での最先端の競合より優れていることが示された。
とくに、KITTIの深度予測オンラインベンチマークでは、提出時点で1位にランクインしている。
関連論文リスト
- DCPI-Depth: Explicitly Infusing Dense Correspondence Prior to Unsupervised Monocular Depth Estimation [17.99904937160487]
DCPI-Depthは、これらの革新的なコンポーネントをすべて組み込んで、2つの双方向および協調的なストリームを結合するフレームワークである。
複数の公開データセットにまたがる最先端のパフォーマンスと一般化性を実現し、既存のすべての先行技術を上回っている。
論文 参考訳(メタデータ) (2024-05-27T08:55:17Z) - Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
本稿では,3次元の知覚的特徴と多視点幾何整合性を利用して,高精度な自己監督深度補完法を提案する。
NYU-Depthv2 と VOID のベンチマークデータセットを用いた実験により,提案モデルが最先端の深度補完性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-23T14:19:56Z) - NDDepth: Normal-Distance Assisted Monocular Depth Estimation and
Completion [18.974297347310287]
単眼深度推定と完了のための新しい物理(幾何学)駆動型ディープラーニングフレームワークを提案する。
提案手法は,最先端の単分子深度推定および完成競合よりも高い性能を示す。
論文 参考訳(メタデータ) (2023-11-13T09:01:50Z) - GEDepth: Ground Embedding for Monocular Depth Estimation [4.95394574147086]
本稿では,画像からカメラパラメータを分離する新たな接地モジュールを提案する。
地下深度と残留深度を最適に組み合わせるために、地上の注意をモジュール内に設計する。
実験の結果,本手法は一般的なベンチマークで最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-09-18T17:56:06Z) - P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior [133.76192155312182]
本研究では,コプラナー画素からの情報を選択的に活用して予測深度を改善する手法を提案する。
本手法の広範な評価により, 教師付き単分子深度推定法において, 新たな手法の確立が期待できる。
論文 参考訳(メタデータ) (2022-04-05T10:03:52Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
2次元構造移動(SfM)は3次元再構成と視覚SLAMの基礎となる。
古典パイプラインの適切性を活用することで,深部2視点sfmの問題を再検討することを提案する。
本手法は,1)2つのフレーム間の密対応を予測する光フロー推定ネットワーク,2)2次元光フロー対応から相対カメラポーズを計算する正規化ポーズ推定モジュール,3)エピポーラ幾何を利用して探索空間を縮小し,密対応を洗練し,相対深度マップを推定するスケール不変深さ推定ネットワークからなる。
論文 参考訳(メタデータ) (2021-04-01T15:31:20Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
深度予測における高次3次元幾何学的制約の重要性を示す。
単純な幾何学的制約を強制する損失項を設計することにより、単眼深度推定の精度とロバスト性を大幅に改善する。
The-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI。
論文 参考訳(メタデータ) (2021-03-07T00:08:21Z) - Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction [72.30870535815258]
モノクロ深度予測のためのCNNは、周囲の環境の3Dマップを構築するための2つの大きく不連続なアプローチを表している。
本稿では,CNN予測深度を利用してRGB-D特徴量に基づくSLAMを行う,狭義の広義の自己改善フレームワークを提案する。
一方、より原理化された幾何学的SLAMの3次元シーン構造とカメラポーズは、新しい広義のベースライン損失により奥行きネットワークに注入される。
論文 参考訳(メタデータ) (2020-04-22T16:31:59Z) - Guiding Monocular Depth Estimation Using Depth-Attention Volume [38.92495189498365]
本研究では,特に屋内環境に広く分布する平面構造を優先するための奥行き推定法を提案する。
2つのポピュラーな屋内データセットであるNYU-Depth-v2とScanNetの実験により,本手法が最先端の深度推定結果を実現することを示す。
論文 参考訳(メタデータ) (2020-04-06T15:45:52Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
カラービデオから多フレーム深度を推定する新しい学習手法を提案する。
本手法は深度推定精度において最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-04-02T07:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。