論文の概要: Unsupervised Deep Cross-Language Entity Alignment
- arxiv url: http://arxiv.org/abs/2309.10598v1
- Date: Tue, 19 Sep 2023 13:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 14:22:57.600953
- Title: Unsupervised Deep Cross-Language Entity Alignment
- Title(参考訳): 教師なし深層言語エンティティアライメント
- Authors: Chuanyu Jiang, Yiming Qian, Lijun Chen, Yang Gu, and Xia Xie
- Abstract要約: 本稿では,言語間エンティティアライメントのためのシンプルで新しい教師なし手法を提案する。
ディープラーニング多言語エンコーダと機械翻訳器を組み合わせて知識グラフテキストをエンコードする。
その結果,Ja-EnとFr-Enのアライメントタスクでは2.6%,0.4%を達成できた。
- 参考スコア(独自算出の注目度): 14.904785474912018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-lingual entity alignment is the task of finding the same semantic
entities from different language knowledge graphs. In this paper, we propose a
simple and novel unsupervised method for cross-language entity alignment. We
utilize the deep learning multi-language encoder combined with a machine
translator to encode knowledge graph text, which reduces the reliance on label
data. Unlike traditional methods that only emphasize global or local alignment,
our method simultaneously considers both alignment strategies. We first view
the alignment task as a bipartite matching problem and then adopt the
re-exchanging idea to accomplish alignment. Compared with the traditional
bipartite matching algorithm that only gives one optimal solution, our
algorithm generates ranked matching results which enabled many potentials
downstream tasks. Additionally, our method can adapt two different types of
optimization (minimal and maximal) in the bipartite matching process, which
provides more flexibility. Our evaluation shows, we each scored 0.966, 0.990,
and 0.996 Hits@1 rates on the DBP15K dataset in Chinese, Japanese, and French
to English alignment tasks. We outperformed the state-of-the-art method in
unsupervised and semi-supervised categories. Compared with the state-of-the-art
supervised method, our method outperforms 2.6% and 0.4% in Ja-En and Fr-En
alignment tasks while marginally lower by 0.2% in the Zh-En alignment task.
- Abstract(参考訳): 言語間のエンティティアライメントは、異なる言語知識グラフから同じセマンティックエンティティを見つけるタスクである。
本稿では,言語間エンティティアライメントのための単純かつ新しい教師なし手法を提案する。
深層学習用多言語エンコーダと機械翻訳器を組み合わせて知識グラフテキストを符号化し,ラベルデータへの依存を減らす。
グローバルアライメントとローカルアライメントのみを強調する従来の手法とは異なり,両アライメント戦略を同時に考慮する。
まず、アライメントタスクを二部構成のマッチング問題とみなし、アライメントを達成するために再変化するアイデアを採用する。
最適解のみを与える従来の二部マッチングアルゴリズムと比較して,本アルゴリズムはランク付けされたマッチング結果を生成し,多くのポテンシャルを下流タスクで実現した。
さらに,2種類の最適化(最小値と最大値)を両部マッチングプロセスに適応させることで,柔軟性が向上する。
評価の結果,中国語,日本語,フランス語のDBP15Kデータセットでそれぞれ0.966,0.990,0.996 Hits@1のスコアを得た。
非教師なしと半教師なしのカテゴリで最先端の手法を上回った。
最新の教師付き手法と比較すると,ja-en と fr-en のアライメントタスクでは2.6%,0.4%,zh-en アライメントタスクでは 0.2% 以下である。
関連論文リスト
- How Transliterations Improve Crosslingual Alignment [48.929677368744606]
近年の研究では、アライメント目的を用いた多言語事前学習言語モデル(mPLM)が言語横断アライメントを改善することが示されている。
本稿では, 言語間のアライメントを明示的に評価し, 翻訳に基づくアプローチにおける重要な要素を同定し, 性能向上に寄与する。
論文 参考訳(メタデータ) (2024-09-25T20:05:45Z) - BinaryAlign: Word Alignment as Binary Sequence Labeling [2.5575527199248347]
本稿では,バイナリシーケンスラベリングに基づく単語アライメント手法であるBinaryAlignを提案する。
非英語対におけるBinaryAlignの性能について検討する。
論文 参考訳(メタデータ) (2024-07-16T15:11:06Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - Graph Algorithms for Multiparallel Word Alignment [2.5200727733264663]
本研究では,最初のバイリンガルアライメントの集合をグラフとして表現することにより,コーパスの多重並列性を利用する。
エッジ予測のためのグラフアルゴリズムを2つ提案する。1つは推薦システムにインスパイアされたもので、もう1つはネットワークリンク予測に基づくものである。
論文 参考訳(メタデータ) (2021-09-13T19:40:29Z) - Cross-domain Speech Recognition with Unsupervised Character-level
Distribution Matching [60.8427677151492]
2つの領域における各文字間の微粒化適応を行うための文字レベルの分布マッチング手法であるCMatchを提案する。
Libri-Adaptデータセットを用いた実験の結果,提案手法はクロスデバイスとクロス環境の両方で14.39%,16.50%の単語誤り率(WER)を低減できることがわかった。
論文 参考訳(メタデータ) (2021-04-15T14:36:54Z) - Word Alignment by Fine-tuning Embeddings on Parallel Corpora [96.28608163701055]
並列コーパス上の単語アライメントには、翻訳語彙の学習、言語処理ツールの言語間変換、翻訳出力の自動評価や解析など、幅広い応用がある。
近年,複数言語で訓練された言語モデル(LM)から抽出した事前学習された単語埋め込みが,並列データに対する明示的な訓練がなくても,単語アライメントタスクにおける競合的な結果が得られることを示す研究も行われている。
本稿では,事前学習したLMの活用と,アライメント品質の向上を目的とした並列テキストによる微調整,提案という2つのアプローチの結婚方法を検討する。
論文 参考訳(メタデータ) (2021-01-20T17:54:47Z) - Do Explicit Alignments Robustly Improve Multilingual Encoders? [22.954688396858085]
多言語エンコーダは、言語間表現を効果的に学習することができる。
EuroparlやMultiUNのようなbitextsに基づく明示的なアライメント目的は、これらの表現をさらに改善することが示されている。
このような信号をよりよく活用できる新しいコントラストアライメント目的を提案する。
論文 参考訳(メタデータ) (2020-10-06T07:43:17Z) - Cross-lingual Alignment Methods for Multilingual BERT: A Comparative
Study [2.101267270902429]
ゼロショット設定におけるmBERTの転送能力に異なる言語間監督形態と様々なアライメント手法がどう影響するかを解析する。
並列コーパスの監督は概ね辞書アライメントよりも優れている。
論文 参考訳(メタデータ) (2020-09-29T20:56:57Z) - Cross-lingual Entity Alignment with Incidental Supervision [76.66793175159192]
本稿では,多言語KGとテキストコーパスを共通埋め込み方式で共同で表現する,偶発的に教師付きモデルであるJEANSを提案する。
ベンチマークデータセットの実験では、JEANSがエンティティアライメントとインシデントインシデントインシデントインスペクションの改善を期待できる結果となった。
論文 参考訳(メタデータ) (2020-05-01T01:53:56Z) - Massively Multilingual Document Alignment with Cross-lingual
Sentence-Mover's Distance [8.395430195053061]
ドキュメントアライメントは、互いに同等のコンテンツや翻訳を持つ2つの異なる言語で文書のペアを特定することを目的としている。
言語間文の埋め込みを利用した教師なしスコアリング機能を開発し、異なる言語の文書間の意味的距離を計算する。
これらのセマンティック距離は、文書アライメントアルゴリズムを誘導して、低言語、中言語、高リソースの様々なペアで言語間ウェブ文書を適切にペアリングする。
論文 参考訳(メタデータ) (2020-01-31T05:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。