Large language models can accurately predict searcher preferences
- URL: http://arxiv.org/abs/2309.10621v3
- Date: Thu, 16 May 2024 21:53:41 GMT
- Title: Large language models can accurately predict searcher preferences
- Authors: Paul Thomas, Seth Spielman, Nick Craswell, Bhaskar Mitra,
- Abstract summary: This paper introduces an alternate approach for improving label quality.
It takes careful feedback from real users, which by definition is the highest-quality first-party gold data.
We have found large language models can be effective, with accuracy as good as human labellers.
- Score: 12.134907765184572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relevance labels, which indicate whether a search result is valuable to a searcher, are key to evaluating and optimising search systems. The best way to capture the true preferences of users is to ask them for their careful feedback on which results would be useful, but this approach does not scale to produce a large number of labels. Getting relevance labels at scale is usually done with third-party labellers, who judge on behalf of the user, but there is a risk of low-quality data if the labeller doesn't understand user needs. To improve quality, one standard approach is to study real users through interviews, user studies and direct feedback, find areas where labels are systematically disagreeing with users, then educate labellers about user needs through judging guidelines, training and monitoring. This paper introduces an alternate approach for improving label quality. It takes careful feedback from real users, which by definition is the highest-quality first-party gold data that can be derived, and develops an large language model prompt that agrees with that data. We present ideas and observations from deploying language models for large-scale relevance labelling at Bing, and illustrate with data from TREC. We have found large language models can be effective, with accuracy as good as human labellers and similar capability to pick the hardest queries, best runs, and best groups. Systematic changes to the prompts make a difference in accuracy, but so too do simple paraphrases. To measure agreement with real searchers needs high-quality "gold" labels, but with these we find that models produce better labels than third-party workers, for a fraction of the cost, and these labels let us train notably better rankers.
Related papers
- Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
In supervised machine learning, models are typically trained using data with hard labels, i.e., definite assignments of class membership.
We investigate whether incorporating label uncertainty, represented as discrete probability distributions over the class labels, improves the predictive performance of classification models.
arXiv Detail & Related papers (2024-09-24T13:12:29Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - Eliciting and Learning with Soft Labels from Every Annotator [31.10635260890126]
We focus on efficiently eliciting soft labels from individual annotators.
We demonstrate that learning with our labels achieves comparable model performance to prior approaches.
arXiv Detail & Related papers (2022-07-02T12:03:00Z) - How many labelers do you have? A closer look at gold-standard labels [10.637125300701795]
We show how access to non-aggregated label information can make training well-calibrated models more feasible than it is with gold-standard labels.
We make several predictions for real-world datasets, including when non-aggregate labels should improve learning performance.
arXiv Detail & Related papers (2022-06-24T02:33:50Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
Supervised deep learning depends on massive accurately annotated examples.
A typical alternative is learning from multiple noisy annotators.
This paper proposes a data-efficient approach, called emphTrustable Co-label Learning (TCL)
arXiv Detail & Related papers (2022-03-08T16:57:00Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Confident in the Crowd: Bayesian Inference to Improve Data Labelling in
Crowdsourcing [0.30458514384586394]
We present new techniques to improve the quality of the labels while attempting to reduce the cost.
This paper investigates the use of more sophisticated methods, such as Bayesian inference, to measure the performance of the labellers.
Our methods outperform the standard voting methods in both cost and accuracy while maintaining higher reliability when there is disagreement within the crowd.
arXiv Detail & Related papers (2021-05-28T17:09:45Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
We investigate efficient annotation strategies for collecting multi-class classification labels for a large collection of images.
We propose modifications and best practices aimed at minimizing human labeling effort.
Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average.
arXiv Detail & Related papers (2021-04-26T16:29:32Z) - OpinionRank: Extracting Ground Truth Labels from Unreliable Expert
Opinions with Graph-Based Spectral Ranking [2.1930130356902207]
crowdsourcing has emerged as a popular, inexpensive, and efficient data mining solution for performing distributed label collection.
We propose OpinionRank, a model-free, interpretable, graph-based spectral algorithm for integrating crowdsourced annotations into reliable labels.
Our experiments show that OpinionRank performs favorably when compared against more highly parameterized algorithms.
arXiv Detail & Related papers (2021-02-11T08:12:44Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
We propose a self-attention based variational encoder-model to extract the label-label and label-feature dependencies jointly.
Our model can therefore be used to predict all labels in parallel while still including both label-label and label-feature dependencies.
arXiv Detail & Related papers (2020-12-03T05:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.