CFGPT: Chinese Financial Assistant with Large Language Model
- URL: http://arxiv.org/abs/2309.10654v2
- Date: Fri, 22 Sep 2023 09:52:07 GMT
- Title: CFGPT: Chinese Financial Assistant with Large Language Model
- Authors: Jiangtong Li, Yuxuan Bian, Guoxuan Wang, Yang Lei, Dawei Cheng, Zhijun
Ding and Changjun Jiang
- Abstract summary: We present a Chinese Financial Generative Pre-trained Transformer framework, named CFGPT.
CFData comprises both a pre-training dataset and a supervised fine-tuning dataset.
CFLLM is trained on CFData in two stage, continued pre-training and supervised fine-tuning.
- Score: 21.54229667774752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated great potential in natural
language processing tasks within the financial domain. In this work, we present
a Chinese Financial Generative Pre-trained Transformer framework, named CFGPT,
which includes a dataset~(CFData) for pre-training and supervised fine-tuning,
a financial LLM~(CFLLM) to adeptly manage financial texts, and a deployment
framework~(CFAPP) designed to navigate real-world financial applications. The
CFData comprising both a pre-training dataset and a supervised fine-tuning
dataset, where the pre-training dataset collates Chinese financial data and
analytics, alongside a smaller subset of general-purpose text with 584M
documents and 141B tokens in total, and the supervised fine-tuning dataset is
tailored for six distinct financial tasks, embodying various facets of
financial analysis and decision-making with 1.5M instruction pairs and 1.5B
tokens in total. The CFLLM, which is based on InternLM-7B to balance the model
capability and size, is trained on CFData in two stage, continued pre-training
and supervised fine-tuning. The CFAPP is centered on large language models
(LLMs) and augmented with additional modules to ensure multifaceted
functionality in real-world application. Our codes are released at
https://github.com/TongjiFinLab/CFGPT.
Related papers
- Training Compute-Optimal Protein Language Models [48.79416103951816]
Most protein language models are trained with extensive compute resources until performance gains plateau.
Our investigation is grounded in a massive dataset consisting of 939 million protein sequences.
We trained over 300 models ranging from 3.5 million to 10.7 billion parameters on 5 to 200 billion unique tokens.
arXiv Detail & Related papers (2024-11-04T14:58:37Z) - Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data.
We introduce textitOpen-FinLLMs, a series of Financial LLMs that embed comprehensive financial knowledge into text, tables, and time-series data.
We also present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry.
We propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM.
SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations.
arXiv Detail & Related papers (2024-08-05T08:24:24Z) - NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance [15.662858834827444]
FinLLMs exhibit unsatisfactory performance in understanding financial text when numeric variables are involved in questions.
We propose numeric-sensitive large language model (NumLLM) for Chinese finance.
Experiments on financial question-answering benchmark show that NumLLM can boost the performance of the foundation model.
arXiv Detail & Related papers (2024-05-01T15:17:27Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models [18.280762424107408]
FinTral is a suite of state-of-the-art multimodal large language models (LLMs) built upon the Mistral-7b model.
We enhance FinTral with domain-specific pretraining, instruction fine-tuning, and RLAIF training.
Our FinTral model trained with direct preference optimization employing advanced Tools and Retrieval methods, dubbed FinTral-DPO-T&R, demonstrates an exceptional zero-shot performance.
arXiv Detail & Related papers (2024-02-16T05:05:12Z) - D\'olares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs
Between Spanish and English [67.48541936784501]
Tois'on de Oro is the first framework that establishes instruction datasets, finetuned LLMs, and evaluation benchmark for financial LLMs in Spanish joint with English.
We construct a rigorously curated bilingual instruction dataset including over 144K Spanish and English samples from 15 datasets covering 7 tasks.
We evaluate our model and existing LLMs using FLARE-ES, the first comprehensive bilingual evaluation benchmark with 21 datasets covering 9 tasks.
arXiv Detail & Related papers (2024-02-12T04:50:31Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM)
We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation)
Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios.
arXiv Detail & Related papers (2023-10-23T11:33:41Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - BloombergGPT: A Large Language Model for Finance [42.73350054822628]
We present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data.
We construct a 363 billion token dataset based on Bloomberg's extensive data sources, augmented with 345 billion tokens from general purpose datasets.
Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins.
arXiv Detail & Related papers (2023-03-30T17:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.