Nonadiabatic derivative couplings through multiple Franck-Condon modes
dictate the energy gap law for near and short-wave infrared dye molecules
- URL: http://arxiv.org/abs/2309.10695v2
- Date: Sat, 23 Sep 2023 13:54:41 GMT
- Title: Nonadiabatic derivative couplings through multiple Franck-Condon modes
dictate the energy gap law for near and short-wave infrared dye molecules
- Authors: Pablo Ramos, Hannah Friedman, Cesar Garcia, Ellen Sletten, Justin R.
Caram, and Seogjoo J. Jang
- Abstract summary: Near infrared (NIR) and short-wave infrared (SWIR) dye molecules exhibit significant nonradiative decay rates.
Results for two representative NIR/SWIR dye molecules reported here clarify an important mechanism of such nature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Near infrared (NIR, 700 - 1,000 nm) and short-wave infrared (SWIR, 1,000 -
2,000 nm) dye molecules exhibit significant nonradiative decay rates from the
first singlet excited state to the ground state. While these trends can be
empirically explained by a simple energy gap law, detailed mechanisms of the
nearly universal behavior have remained unsettled for many cases. Theoretical
and experimental results for two representative NIR/SWIR dye molecules reported
here clarify an important mechanism of such nature. It is shown that the first
derivative nonadiabatic coupling terms serve as major coupling pathways for
nonadiabatic decay processes exhibiting the energy gap law behavior and that
vibrational modes other than the highest frequency ones also make significant
contributions to the rate. This assessment is corroborated by further
theoretical comparison with possible alternative mechanisms of intersystem
crossing to triplet states and also by comparison with experimental data for
deuterated molecules.
Related papers
- Photon Antibunching in Single-Molecule Vibrational Sum-Frequency Generation [0.0]
Sum-frequency generation (SFG) allows for coherent upconversion of an electromagnetic signal.
Recent studies have shown that plasmonic nanocavities, with their deep sub-wavelength mode volumes, may allow to obtain vibrational SFG signals from a single molecule.
arXiv Detail & Related papers (2024-09-08T15:08:29Z) - Floquet Engineering of a Diatomic Molecule Through a Bichromatic
Radiation Field [0.0]
We report on a theoretical study of a Cs$$ molecule illuminated by two lasers.
We reveal that these interactions facilitate the bypass of the non-crossing rule.
We discuss extensively how the interaction of radiation with matter gives rise to the emergence of potential energy surfaces.
arXiv Detail & Related papers (2023-11-22T21:14:52Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Analogue Black Holes in Reactive Molecules [3.613072342189595]
We show that reactive molecules with a unit probability of reaction naturally provide a simulator of some intriguing black hole physics.
The unit reaction at the short distance acts as an event horizon and delivers a one-way traffic for matter waves passing through the potential barrier.
arXiv Detail & Related papers (2022-04-10T04:07:15Z) - Tests of physics beyond the Standard Model with single-electron ions [0.0]
A highly effective approach to the search for hypothetical new interactions through isotope shift spectroscopy of hydrogen-like ions is presented.
A weighted difference of the g factor and ground-state energy is shown to assist in the suppression of detrimental uncertainties from nuclear structure.
arXiv Detail & Related papers (2022-02-03T16:29:45Z) - Infrared dressing in real time: emergence of anomalous dimensions [0.0]
We study the time evolution of infrared dressing in non-gauge theories.
Super renormalizable and renormalizable models feature infrared divergences similar to those of a theory at a critical point.
We show that effective field theories of massless axion-like particles coupled to fermion fields do not feature infrared divergences.
arXiv Detail & Related papers (2021-05-13T22:28:31Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Near-Field Radiative Heat Transfer Eigenmodes [55.41644538483948]
Near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer.
We present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures.
arXiv Detail & Related papers (2021-02-10T23:14:30Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Resonant enhancement of three-body loss between strongly interacting
photons [47.30557822621873]
Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions.
We show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons.
arXiv Detail & Related papers (2020-10-19T18:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.