論文の概要: Assessing the capacity of a denoising diffusion probabilistic model to
reproduce spatial context
- arxiv url: http://arxiv.org/abs/2309.10817v1
- Date: Tue, 19 Sep 2023 17:58:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 13:03:13.586855
- Title: Assessing the capacity of a denoising diffusion probabilistic model to
reproduce spatial context
- Title(参考訳): 雑音拡散確率モデルによる空間文脈再現能力の評価
- Authors: Rucha Deshpande, Muzaffer \"Ozbey, Hua Li, Mark A. Anastasio, Frank J.
Brooks
- Abstract要約: 拡散確率モデル(DDPM)は生成逆数ネットワーク(GAN)と比較して画像合成性能が優れていることを示す
これらの主張は、自然画像用に設計されたアンサンブルベースの手法や、構造的類似性などの画像品質の従来の尺度を用いて評価されている。
本研究は,空間文脈学習におけるDDPMの能力に関する新たな重要な知見を明らかにするものである。
- 参考スコア(独自算出の注目度): 7.289988602420457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as a popular family of deep generative models
(DGMs). In the literature, it has been claimed that one class of diffusion
models -- denoising diffusion probabilistic models (DDPMs) -- demonstrate
superior image synthesis performance as compared to generative adversarial
networks (GANs). To date, these claims have been evaluated using either
ensemble-based methods designed for natural images, or conventional measures of
image quality such as structural similarity. However, there remains an
important need to understand the extent to which DDPMs can reliably learn
medical imaging domain-relevant information, which is referred to as `spatial
context' in this work. To address this, a systematic assessment of the ability
of DDPMs to learn spatial context relevant to medical imaging applications is
reported for the first time. A key aspect of the studies is the use of
stochastic context models (SCMs) to produce training data. In this way, the
ability of the DDPMs to reliably reproduce spatial context can be
quantitatively assessed by use of post-hoc image analyses. Error-rates in
DDPM-generated ensembles are reported, and compared to those corresponding to a
modern GAN. The studies reveal new and important insights regarding the
capacity of DDPMs to learn spatial context. Notably, the results demonstrate
that DDPMs hold significant capacity for generating contextually correct images
that are `interpolated' between training samples, which may benefit
data-augmentation tasks in ways that GANs cannot.
- Abstract(参考訳): 拡散モデルは、深層生成モデル(DGM)の一般的なファミリーとして登場した。
文献では、拡散確率モデル(DDPM)の1種類の拡散モデルが、生成的敵ネットワーク(GAN)に比べて優れた画像合成性能を示すことが主張されている。
これまでこれらの主張は、自然画像用に設計されたアンサンブルに基づく方法か、従来の構造的類似性などの画質の尺度を用いて評価されてきた。
しかし,本研究では,ddpmが「空間的文脈」と呼ばれる医用画像情報を確実に学習できるかどうかを理解するための重要なニーズが残されている。
これを解決するために,DDPMが医療画像アプリケーションに関連する空間的コンテキストを学習する能力の体系的評価を初めて報告した。
研究の重要な側面は、確率的文脈モデル(scms)を使用してトレーニングデータを生成することである。
このようにして、DDPMが空間コンテキストを確実に再現する能力は、ポストホック画像解析を用いて定量的に評価することができる。
DDPM生成アンサンブルの誤り率を報告し, 現代のガンに対応するアンサンブルと比較した。
本研究は,空間文脈学習におけるDDPMの能力に関する新たな重要な知見を明らかにする。
特に、DDPMはトレーニングサンプル間で '補間' された文脈的に正しい画像を生成する能力を有しており、GANができない方法でデータ拡張タスクに役立つ可能性がある。
関連論文リスト
- Synthetic Augmentation for Anatomical Landmark Localization using DDPMs [0.22499166814992436]
拡散型生成モデルは近年,高品質な合成画像を生成する能力に注目が集まっている。
ランドマークマッチングのためのマルコフランダムフィールド(MRF)モデルと統計的形状モデル(SSM)を用いて,生成画像の品質を評価する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T12:09:38Z) - Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
拡散確率モデル(DPM)は、生成人工知能(GenAI)の主流モデルとして採用されている。
モデル収束を前提とした条件付きおよび非条件付きDPMにおける記憶の理論的理解を提供する。
本研究では、生成されたデータに基づいて訓練された時間依存型分類器を代理条件として利用し、無条件DPMからトレーニングデータを抽出する、textbfSurrogate condItional Data extract (SIDE) という新しいデータ抽出手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T13:17:06Z) - Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
セマンティックはインコンテクストタスクへと発展し、一般化的セグメンテーションモデルを評価する上で重要な要素となった。
我々の最初の焦点は、クエリイメージとサポートイメージの相互作用を容易にする方法を理解することであり、その結果、自己注意フレームワーク内のKV融合法が提案される。
そこで我々はDiffewSというシンプルで効果的なフレームワークを構築し,従来の潜在拡散モデルの生成フレームワークを最大限に保持する。
論文 参考訳(メタデータ) (2024-10-03T10:33:49Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
医用画像から画像への変換のためのクロスコンディショニング拡散モデル(CDM)を提案する。
まず、目的のモダリティの分布をモデル化するためのモダリティ固有表現モデル(MRM)を提案する。
そして、MDN(Modality-Decoupled Diffusion Network)を設計し、MRMから効率よく効果的に分布を学習する。
論文 参考訳(メタデータ) (2024-09-13T02:48:56Z) - SAR Image Synthesis with Diffusion Models [0.0]
拡散モデル(DM)は、合成データを生成する一般的な方法となっている。
本研究では,拡散確率モデル (DDPM) をSAR領域に適応させる特定の種類のDMについて述べる。
DDPMは,SAR画像生成のための最先端のGAN法よりも質的に,定量的に優れていることを示す。
論文 参考訳(メタデータ) (2024-05-13T14:21:18Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Diffusion Model as Representation Learner [86.09969334071478]
Diffusion Probabilistic Models (DPMs) は、最近、様々な生成タスクにおいて顕著な結果を示した。
本稿では,DPMが獲得した知識を認識タスクに活用する新しい知識伝達手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T00:38:39Z) - Zero-shot Medical Image Translation via Frequency-Guided Diffusion
Models [9.15810015583615]
構造保存画像変換のための拡散モデルを導出するために周波数領域フィルタを用いた周波数誘導拡散モデル(FGDM)を提案する。
その設計に基づいて、FGDMはゼロショット学習を可能にし、ターゲットドメインのデータのみに基づいてトレーニングし、ソース・ツー・ターゲットドメインの変換に直接使用することができる。
FGDMは、Frechet Inception Distance(FID)、Peak Signal-to-Noise Ratio(PSNR)、および構造的類似性の測定値において、最先端手法(GANベース、VAEベース、拡散ベース)よりも優れていた
論文 参考訳(メタデータ) (2023-04-05T20:47:40Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - Progressively-Growing AmbientGANs For Learning Stochastic Object Models
From Imaging Measurements [14.501812971529137]
医療画像システムの客観的な最適化には、測定データ中のランダム性のすべての源をフルに評価する必要がある。
本稿では,オブジェクトのクラスにおける変数を記述するオブジェクトモデル(SOM)の確立を提案する。
医用イメージングシステムは、物体特性のノイズや間接的な表現を示す画像計測を記録しているため、画像化対象のモデルを構築するために直接GANを適用することはできない。
論文 参考訳(メタデータ) (2020-01-26T21:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。