論文の概要: ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models
- arxiv url: http://arxiv.org/abs/2309.01111v1
- Date: Sun, 3 Sep 2023 07:55:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:21:52.006418
- Title: ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models
- Title(参考訳): ArSDM:適応リファインメント・セマンティック拡散モデルを用いた大腸内視鏡画像合成
- Authors: Yuhao Du, Yuncheng Jiang, Shuangyi Tan, Xusheng Wu, Qi Dou, Zhen Li,
Guanbin Li, Xiang Wan
- Abstract要約: 大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
- 参考スコア(独自算出の注目度): 69.9178140563928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colonoscopy analysis, particularly automatic polyp segmentation and
detection, is essential for assisting clinical diagnosis and treatment.
However, as medical image annotation is labour- and resource-intensive, the
scarcity of annotated data limits the effectiveness and generalization of
existing methods. Although recent research has focused on data generation and
augmentation to address this issue, the quality of the generated data remains a
challenge, which limits the contribution to the performance of subsequent
tasks. Inspired by the superiority of diffusion models in fitting data
distributions and generating high-quality data, in this paper, we propose an
Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy
images that benefit the downstream tasks. Specifically, ArSDM utilizes the
ground-truth segmentation mask as a prior condition during training and adjusts
the diffusion loss for each input according to the polyp/background size ratio.
Furthermore, ArSDM incorporates a pre-trained segmentation model to refine the
training process by reducing the difference between the ground-truth mask and
the prediction mask. Extensive experiments on segmentation and detection tasks
demonstrate the generated data by ArSDM could significantly boost the
performance of baseline methods.
- Abstract(参考訳): 大腸内視鏡検査,特にポリープの自動分画と検出は臨床診断と治療の補助に不可欠である。
しかし, 医用画像アノテーションは労働集約的かつ資源集約的であるため, 注釈付きデータの不足は既存の手法の有効性と一般化を制限している。
最近の研究は、この問題に対処するためにデータ生成と拡張に焦点を当てているが、生成されたデータの品質は依然として課題であり、その後のタスクのパフォーマンスへの貢献を制限する。
本稿では,データ分布の適合や高品質なデータ生成における拡散モデルの優位性に着想を得て,下流の作業に有利な大腸内視鏡画像を生成するための適応リファインメント・セマンティック拡散モデル(ArSDM)を提案する。
具体的には、ArSDMは、トレーニング中にグラウントトラスセグメンテーションマスクを事前条件として使用し、ポリプ/バックグラウンドサイズ比に応じて各入力の拡散損失を調整する。
さらに、arsdmは事前訓練されたセグメンテーションモデルを採用しており、接地マスクと予測マスクとの差を低減し、トレーニングプロセスを洗練している。
セグメンテーションと検出タスクに関する大規模な実験は、ArSDMが生成したデータをベースライン法の性能を大幅に向上させることを示した。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
本稿では,医療応用における生成モデルを活用するための新しいパラダイムについて検討する。
本稿では,テキストプロンプトとマスクに条件付き生成を可能にするMRGenという拡散型データエンジンを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
論文 参考訳(メタデータ) (2023-12-07T11:03:42Z) - In-context Cross-Density Adaptation on Noisy Mammogram Abnormalities
Detection [0.4433315630787158]
本稿では,乳房密度分布が深層学習モデルの一般化性能に及ぼす影響をマンモグラフィー画像で検討する。
本稿では,データセット内のソースとターゲット間のドメインギャップを埋める,堅牢な拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-12T06:46:42Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。