Sublinear Regret for a Class of Continuous-Time Linear--Quadratic Reinforcement Learning Problems
- URL: http://arxiv.org/abs/2407.17226v2
- Date: Sat, 21 Sep 2024 16:48:58 GMT
- Title: Sublinear Regret for a Class of Continuous-Time Linear--Quadratic Reinforcement Learning Problems
- Authors: Yilie Huang, Yanwei Jia, Xun Yu Zhou,
- Abstract summary: We study reinforcement learning for a class of continuous-time linear-quadratic (LQ) control problems for diffusions.
We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an actor-critic algorithm to learn the optimal policy parameter directly.
- Score: 10.404992912881601
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an actor-critic algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Reinforcement Learning for a Discrete-Time Linear-Quadratic Control Problem with an Application [0.0]
We study the discrete-time linear-quadratic (LQ) control model using reinforcement learning (RL)
Using entropy to measure the cost of exploration, we prove that the optimal feedback policy for the problem must be Gaussian type.
Then, we apply the results of the discrete-time LQ model to solve the discrete-time mean-variance asset-liability management problem and prove our RL algorithm's policy improvement and convergence.
arXiv Detail & Related papers (2024-12-08T11:55:13Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Stochastic optimal well control in subsurface reservoirs using
reinforcement learning [0.0]
We present a case study of model-free reinforcement learning framework to solve optimal control for a predefined parameter uncertainty distribution.
In principle, RL algorithms are capable of learning optimal action policies to maximize a numerical reward signal.
We present numerical results using two state-of-the-art RL algorithms, proximal policy optimization (PPO) and advantage actor-critic (A2C) on two subsurface flow test cases.
arXiv Detail & Related papers (2022-07-07T17:34:23Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
In practical applications of RL, it is expensive to observe state transitions from the environment.
We propose an acquisition function that quantifies how much information a state-action pair would provide about the optimal solution to a Markov decision process.
arXiv Detail & Related papers (2021-12-09T23:13:57Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
We present online policies that learn optimal actions fast by carefully randomizing the parameter estimates.
We prove sharp stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by sub-optimal actions.
Our analysis sheds light on fundamental challenges in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
arXiv Detail & Related papers (2021-09-16T00:08:50Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.