論文の概要: LMDX: Language Model-based Document Information Extraction and Localization
- arxiv url: http://arxiv.org/abs/2309.10952v2
- Date: Fri, 21 Jun 2024 21:55:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 04:58:37.103900
- Title: LMDX: Language Model-based Document Information Extraction and Localization
- Title(参考訳): LMDX:言語モデルに基づく文書情報抽出とローカライゼーション
- Authors: Vincent Perot, Kai Kang, Florian Luisier, Guolong Su, Xiaoyu Sun, Ramya Sree Boppana, Zilong Wang, Zifeng Wang, Jiaqi Mu, Hao Zhang, Chen-Yu Lee, Nan Hua,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらした
視覚的に豊かな文書から情報を抽出する彼らの応用は、まだ成功していない。
このタスクにLLMを採用する主な障害は、LLM内にレイアウトエンコーディングがないことである。
- 参考スコア(独自算出の注目度): 23.656970495804963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLM) have revolutionized Natural Language Processing (NLP), improving state-of-the-art and exhibiting emergent capabilities across various tasks. However, their application in extracting information from visually rich documents, which is at the core of many document processing workflows and involving the extraction of key entities from semi-structured documents, has not yet been successful. The main obstacles to adopting LLMs for this task include the absence of layout encoding within LLMs, which is critical for high quality extraction, and the lack of a grounding mechanism to localize the predicted entities within the document. In this paper, we introduce Language Model-based Document Information Extraction and Localization (LMDX), a methodology to reframe the document information extraction task for a LLM. LMDX enables extraction of singular, repeated, and hierarchical entities, both with and without training data, while providing grounding guarantees and localizing the entities within the document. Finally, we apply LMDX to the PaLM 2-S and Gemini Pro LLMs and evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and showing how LMDX enables the creation of high quality, data-efficient parsers.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理(NLP)に革命をもたらし、最先端を改善し、様々なタスクにまたがる創発的な能力を示す。
しかし、多くのドキュメント処理ワークフローの中核であり、半構造化文書からキーエンティティを抽出する、視覚的に豊かなドキュメントから情報を取り出すアプリケーションはまだ成功していない。
このタスクにLLMを採用する際の主な障害は、高品質な抽出に不可欠であるLLM内のレイアウトエンコーディングの欠如と、ドキュメント内の予測エンティティをローカライズする基盤機構の欠如である。
本稿では,LLMのための文書情報抽出タスクを再構成する手法であるLMDX(Language Model-based Document Information extract and Localization)を紹介する。
LMDXは、トレーニングデータと非トレーニングデータの両方を含む特異、繰り返し、階層的なエンティティの抽出を可能にし、ドキュメント内のエンティティの保証とローカライズを提供する。
最後に, LMDX を PaLM 2-S と Gemini Pro の LLM に適用し,VRDU と CORD のベンチマークで評価し, 新たな最先端技術の設定と, LMDX が高品質でデータ効率のよいパーサの作成を可能にしていることを示す。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawkは文書指向マルチモーダル言語モデル(MLLM)である。
4つの専用コンポーネントを設計することで、効率的な微粒化知覚を探索するように設計されている。
汎用MLLMベンチマークと文書指向MLLMベンチマークの両方で広範な実験を行い、TextHawkが最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-14T09:48:37Z) - FOFO: A Benchmark to Evaluate LLMs' Format-Following Capability [70.84333325049123]
FoFoは、大規模言語モデル(LLM)の複雑なドメイン固有のフォーマットに従う能力を評価するための先駆的なベンチマークである。
本稿では,大規模言語モデル(LLM)の複雑なドメイン固有フォーマットに従う能力を評価するための先駆的ベンチマークであるFoFoを提案する。
論文 参考訳(メタデータ) (2024-02-28T19:23:27Z) - Self-Retrieval: Building an Information Retrieval System with One Large
Language Model [102.78988790457004]
Self-Retrievalは、エンドツーエンドのLLM駆動の情報検索アーキテクチャである。
本稿では,自己検索が従来の検索手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-02-23T18:45:35Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Language Models Enable Simple Systems for Generating Structured Views of
Heterogeneous Data Lakes [15.214583657626697]
EVAPORATEは大規模言語モデル(LLM)を利用したプロトタイプシステムである。
コード合成は安価だが、各文書をLSMで直接処理するよりもはるかに正確ではない。
直接抽出よりも優れた品質を実現する拡張コード実装EVAPORATE-CODE+を提案する。
論文 参考訳(メタデータ) (2023-04-19T06:00:26Z) - In-Context Retrieval-Augmented Language Models [28.23702459322163]
In-Context RALMは市販の汎用検索機を利用して、モデルサイズや多様なコーパスに対して驚くほど大きなLMゲインを提供する。
In-Context RALM は LM の接地頻度を増大させる可能性があると結論付けている。
論文 参考訳(メタデータ) (2023-01-31T20:26:16Z) - LAWDR: Language-Agnostic Weighted Document Representations from
Pre-trained Models [8.745407715423992]
言語間文書表現は、多言語コンテキストにおける言語理解を可能にする。
BERT、XLM、XLM-RoBERTaのような大規模な事前学習言語モデルは、文レベルの下流タスクを微調整することで大きな成功を収めた。
論文 参考訳(メタデータ) (2021-06-07T07:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。