論文の概要: DocLayLLM: An Efficient Multi-modal Extension of Large Language Models for Text-rich Document Understanding
- arxiv url: http://arxiv.org/abs/2408.15045v3
- Date: Wed, 19 Mar 2025 10:05:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:20:19.686886
- Title: DocLayLLM: An Efficient Multi-modal Extension of Large Language Models for Text-rich Document Understanding
- Title(参考訳): DocLayLLM: テキストリッチ文書理解のための大規模言語モデルの効率的なマルチモーダル拡張
- Authors: Wenhui Liao, Jiapeng Wang, Hongliang Li, Chengyu Wang, Jun Huang, Lianwen Jin,
- Abstract要約: テキストリッチ文書理解(TDU)では,テキストの内容や複雑なレイアウトを含む文書を包括的に分析する必要がある。
本稿では,TDUに特化して設計されたマルチモーダル言語モデル(MLLM)の効率的なマルチモーダル拡張であるDocLayLLMを紹介する。
- 参考スコア(独自算出の注目度): 40.38251904765156
- License:
- Abstract: Text-rich document understanding (TDU) requires comprehensive analysis of documents containing substantial textual content and complex layouts. While Multimodal Large Language Models (MLLMs) have achieved fast progress in this domain, existing approaches either demand significant computational resources or struggle with effective multi-modal integration. In this paper, we introduce DocLayLLM, an efficient multi-modal extension of LLMs specifically designed for TDU. By lightly integrating visual patch tokens and 2D positional tokens into LLMs' input and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM outperforms existing OCR-dependent methods and OCR-free competitors. Code and model are available at https://github.com/whlscut/DocLayLLM.
- Abstract(参考訳): テキストリッチ文書理解(TDU)では,テキストの内容や複雑なレイアウトを含む文書を包括的に分析する必要がある。
MLLM(Multimodal Large Language Models)はこの領域で急速に進歩してきたが、既存のアプローチでは重要な計算資源を必要とするか、効果的なマルチモーダル統合に苦戦している。
本稿では、TDU用に特別に設計されたLLMの効率的なマルチモーダル拡張であるDocLayLLMを紹介する。
視覚的パッチトークンと2次元位置トークンをLLMの入力に統合し、LLM自体を用いて文書コンテンツを符号化することにより、LLMの文書理解能力を完全に活用し、OCR情報の認識を高める。
また,チェーン・オブ・シント(CoT)の役割を深く検討し,CoT事前学習とCoTアニーリングの技法を革新的に提案した。
私たちのDocLayLLMは、軽量なトレーニング設定で優れたパフォーマンスを実現し、その効率性と有効性を示します。
実験の結果,DocLayLLMは既存のOCR依存メソッドやOCR非競合よりも優れていた。
コードとモデルはhttps://github.com/whlscut/DocLayLLM.comで公開されている。
関連論文リスト
- Extract Information from Hybrid Long Documents Leveraging LLMs: A Framework and Dataset [52.286323454512996]
大規模言語モデル(LLM)は、テキストと表のデータを含むハイブリッドテキストを理解し解析することができる。
本研究では,LLMがHLD(Hybrid Long Document)を処理できるようにするための自動情報抽出フレームワーク(AIE)を提案し,HLDからの情報抽出の4つの重要な側面を分析する実験を行った。
HLDにおけるデータセット不足の問題に対処し、今後の作業を支援するために、金融レポート数値抽出(FINE)データセットを提案する。
論文 参考訳(メタデータ) (2024-12-28T07:54:14Z) - Hierarchical Visual Feature Aggregation for OCR-Free Document Understanding [41.43688559565315]
我々は、事前訓練されたマルチモーダル大言語モデル(MLLM)に基づく新しいOCRフリー文書理解フレームワークを提案する。
本手法では,文書画像内のフォントサイズを多種多様な視覚的特徴量で処理する。
そこで本研究では,入力テキストの相対的な位置を学習することで,モデルのテキスト読解能力を向上させる新しい命令チューニングタスクを提案する。
論文 参考訳(メタデータ) (2024-11-08T00:58:12Z) - DocKD: Knowledge Distillation from LLMs for Open-World Document Understanding Models [66.91204604417912]
本研究の目的は,LLMの知識を蒸留することにより,小型VDUモデルの一般化性を高めることである。
我々は、外部文書知識を統合することでデータ生成プロセスを強化する新しいフレームワーク(DocKD)を提案する。
実験の結果,DocKDは高品質な文書アノテーションを生成し,直接知識蒸留手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-10-04T00:53:32Z) - Leveraging Distillation Techniques for Document Understanding: A Case Study with FLAN-T5 [0.0]
本稿では,LLM ChatGPTから文書理解知識をFLAN-T5に抽出する手法を提案する。
本研究は, 実世界のシナリオにおける高度言語モデルの展開を促進する蒸留技術の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-09-17T15:37:56Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
Bundle-MLLMは,大規模言語モデル(LLM)をハイブリットアイテムトークン化アプローチにより微調整する新しいフレームワークである。
具体的には、テキスト、メディア、およびリレーショナルデータを統一トークン化に統合し、テキストトークンと非テキストトークンを区別するソフトな分離トークンを導入する。
1)バンドルパターンを学習し,2)製品バンドル固有のマルチモーダルセマンティック理解の強化を行う。
論文 参考訳(メタデータ) (2024-07-16T13:30:14Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
文書オブジェクト協調学習(Document Object Contrastive Learning, DoCo)と呼ばれる対照的な学習フレームワークを提案する。
DoCoは補助的なマルチモーダルエンコーダを利用して文書オブジェクトの特徴を取得し、それをLVLM(Large Visual-Language Models)の視覚エンコーダによって生成された視覚的特徴に合わせる。
提案するDoCoは,様々なLVLMの事前学習において,推論過程における計算複雑性の増大を招くことなく,プラグイン・アンド・プレイの事前学習手法として機能することが実証された。
論文 参考訳(メタデータ) (2024-02-29T10:17:27Z) - LAPDoc: Layout-Aware Prompting for Documents [3.523208537466128]
そこで本研究では,テキストベースのLLMを文書固有のタスクに使用する可能性について,レイアウトエンリッチメントを用いて検討する。
その結果,レイアウトの充実により,文書理解のためのテキストベースのLLMの性能が最大15%向上することが示唆された。
論文 参考訳(メタデータ) (2024-02-15T10:00:49Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。