論文の概要: SpikingNeRF: Making Bio-inspired Neural Networks See through the Real
World
- arxiv url: http://arxiv.org/abs/2309.10987v2
- Date: Sat, 28 Oct 2023 15:51:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 20:15:57.264290
- Title: SpikingNeRF: Making Bio-inspired Neural Networks See through the Real
World
- Title(参考訳): SpikingNeRF:バイオインスパイアされたニューラルネットワークを現実世界で見る
- Authors: Xingting Yao, Qinghao Hu, Tielong Liu, Zitao Mo, Zeyu Zhu, Zhengyang
Zhuge, Jian Cheng
- Abstract要約: 本稿では,SNNの時間次元と放射光を一致させて放射場を再構成するSpikeNeRFを提案する。
各種データセットを用いた実験により, 平均70.79%のエネルギー消費を削減できた。
- 参考スコア(独自算出の注目度): 17.235184420475615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have been thriving on numerous tasks to
leverage their promising energy efficiency and exploit their potentialities as
biologically plausible intelligence. Meanwhile, the Neural Radiance Fields
(NeRF) render high-quality 3D scenes with massive energy consumption, but few
works delve into the energy-saving solution with a bio-inspired approach. In
this paper, we propose SpikingNeRF, which aligns the radiance ray with the
temporal dimension of SNN, to naturally accommodate the SNN to the
reconstruction of Radiance Fields. Thus, the computation turns into a
spike-based, multiplication-free manner, reducing the energy consumption. In
SpikingNeRF, each sampled point on the ray is matched onto a particular time
step, and represented in a hybrid manner where the voxel grids are maintained
as well. Based on the voxel grids, sampled points are determined whether to be
masked for better training and inference. However, this operation also incurs
irregular temporal length. We propose the temporal padding strategy to tackle
the masked samples to maintain regular temporal length, i.e., regular tensors,
and the temporal condensing strategy to form a denser data structure for
hardware-friendly computation. Extensive experiments on various datasets
demonstrate that our method reduces the 70.79\% energy consumption on average
and obtains comparable synthesis quality with the ANN baseline.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、その有望なエネルギー効率を活用し、生物学的に妥当な知性としてその可能性を活用するために、数多くのタスクに取り組んできた。
一方、Neural Radiance Fields(NeRF)は、大量のエネルギーを消費する高品質な3Dシーンをレンダリングするが、バイオインスパイアされたアプローチで省エネソリューションを掘り下げる作業はほとんどない。
本稿では,放射光線をsnnの時間次元と整合させ,snnを放射場の再構成に自然に適応させるspikingnerfを提案する。
したがって、計算はスパイクベースで乗算のない方法に変わり、エネルギー消費を減少させる。
SpikingNeRFでは、光線上の各サンプリング点が特定の時間ステップに一致し、ボクセルグリッドも維持されるハイブリッドな方法で表現される。
ボクセルグリッドに基づいて、よりよいトレーニングと推論のためにマスキングするかどうかのサンプルポイントが決定される。
しかし、この操作には不規則な時間的長さも伴う。
本稿では,正則テンソルのような正則時間長を維持するためにマスキング試料に取り組むための時間的パディング戦略と,ハードウェアフレンドリーな計算のための密度の高いデータ構造を形成する時間的凝縮戦略を提案する。
各種データセットに対する大規模な実験により, 提案手法は平均70.79 %のエネルギー消費を削減し, ANNベースラインと同等の合成品質が得られることが示された。
関連論文リスト
- Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics [2.9578022754506605]
骨格に基づく行動認識では、グラフ畳み込みネットワーク(GCN)はその複雑さと高エネルギー消費のために制限に直面している。
本稿では、骨格配列の時間次元をスパイキング時間ステップとして活用するSignal-SGN(Spiking Graph Convolutional Network)を提案する。
実験により,提案モデルが既存のSNN法を精度で上回るだけでなく,学習時の計算記憶コストも低減できることがわかった。
論文 参考訳(メタデータ) (2024-08-03T07:47:16Z) - SGCNeRF: Few-Shot Neural Rendering via Sparse Geometric Consistency Guidance [106.0057551634008]
FreeNeRFは暗黙の幾何正規化を統合することでこの制限を克服しようとする。
新しい研究は、新しい特徴マッチングに基づくスパース幾何正規化モジュールを導入する。
モジュールは、高周波キーポイントをピンポイントすることで、詳細の完全性を保護する。
論文 参考訳(メタデータ) (2024-04-01T08:37:57Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
スパイキングニューラルネットワーク(SNN)は、特にニューロモルフィックハードウェアにおいて、少ないエネルギーを使用しながら特徴を学習することができる。
深層学習において最も広く用いられるニューロンは、時間と火災(LIF)ニューロンである。
論文 参考訳(メタデータ) (2023-06-22T04:25:27Z) - MF-NeRF: Memory Efficient NeRF with Mixed-Feature Hash Table [62.164549651134465]
MF-NeRFは,Mixed-Featureハッシュテーブルを用いてメモリ効率を向上し,再構成品質を維持しながらトレーニング時間を短縮するメモリ効率の高いNeRFフレームワークである。
最新技術であるInstant-NGP、TensoRF、DVGOによる実験は、MF-NeRFが同じGPUハードウェア上で、同様のあるいはそれ以上のリコンストラクション品質で最速のトレーニング時間を達成できることを示唆している。
論文 参考訳(メタデータ) (2023-04-25T05:44:50Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - A temporally and spatially local spike-based backpropagation algorithm
to enable training in hardware [0.0]
Spiking Neural Networks (SNN)は、分類タスクのためのハードウェア効率の良いアーキテクチャとして登場した。
非スパイキング人工ニューラルネットワーク(ANN)で使用される強力なバックプロパゲーション(BP)技術を採用する試みはいくつかある。
論文 参考訳(メタデータ) (2022-07-20T08:57:53Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - WaveSense: Efficient Temporal Convolutions with Spiking Neural Networks
for Keyword Spotting [1.0152838128195467]
拡張時間畳み込みの自然な代替としてスパイキングニューラルダイナミクスを提案する。
このアイデアをWaveNetアーキテクチャにインスパイアされたスパイクニューラルネットワークであるWaveSenseに拡張します。
論文 参考訳(メタデータ) (2021-11-02T09:38:22Z) - An optimised deep spiking neural network architecture without gradients [7.183775638408429]
本稿では、局所シナプスおよびしきい値適応ルールを用いたエンドツーエンドのトレーニング可能なモジュラーイベント駆動ニューラルアーキテクチャを提案する。
このアーキテクチャは、既存のスパイキングニューラルネットワーク(SNN)アーキテクチャの高度に抽象化されたモデルを表している。
論文 参考訳(メタデータ) (2021-09-27T05:59:12Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。