The Topology and Geometry of Neural Representations
- URL: http://arxiv.org/abs/2309.11028v3
- Date: Mon, 3 Jun 2024 17:22:24 GMT
- Title: The Topology and Geometry of Neural Representations
- Authors: Baihan Lin, Nikolaus Kriegeskorte,
- Abstract summary: A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content.
Previous studies have characterized brain representations by their representational geometry.
We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA)
We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and fMRI data.
- Score: 13.050815711184821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and fMRI data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions. These methods enable researchers to calibrate comparisons among representations in brains and models to be sensitive to the geometry, the topology, or a combination of both.
Related papers
- Topological Representational Similarity Analysis in Brains and Beyond [15.417809900388262]
This thesis introduces Topological RSA (tRSA), a novel framework combining geometric and topological properties of neural representations.
tRSA applies nonlinear monotonic transforms to representational dissimilarities, emphasizing local topology while retaining intermediate-scale geometry.
The resulting geo-topological matrices enable model comparisons robust to noise and individual idiosyncrasies.
arXiv Detail & Related papers (2024-08-21T19:02:00Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
We propose a novel approach to brain decoding that also relies on semantic and contextual similarity.
We employ an fMRI dataset of natural image vision and create a deep learning decoding pipeline inspired by the existence of both bottom-up and top-down processes in human vision.
We produce reconstructions of visual stimuli that match the original content very well on a semantic level, surpassing the state of the art in previous literature.
arXiv Detail & Related papers (2022-12-13T16:54:08Z) - Representational dissimilarity metric spaces for stochastic neural
networks [4.229248343585332]
Quantifying similarity between neural representations is a perennial problem in deep learning and neuroscience research.
We generalize shape metrics to quantify differences in representations.
We find that neurobiological oriented visual gratings and naturalistic scenes respectively resemble untrained and trained deep network representations.
arXiv Detail & Related papers (2022-11-21T17:32:40Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
We present a class of statistics that emphasize the topology as well as the geometry of representations.
We evaluate these statistics in terms of the sensitivity and specificity that they afford when used for model selection.
These new methods enable brain and computer scientists to visualize the dynamic representational transformations learned by brains and models.
arXiv Detail & Related papers (2022-03-10T17:14:14Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Exploring The Spatial Reasoning Ability of Neural Models in Human IQ
Tests [19.338539583910023]
We focus on spatial reasoning and explore the spatial understanding of neural models.
We constructed datasets that consist of various complexity levels.
We provide an analysis of the results and factors that affect the generalization abilities of models.
arXiv Detail & Related papers (2020-04-11T09:41:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.