論文の概要: CaveSeg: Deep Semantic Segmentation and Scene Parsing for Autonomous
Underwater Cave Exploration
- arxiv url: http://arxiv.org/abs/2309.11038v5
- Date: Fri, 1 Mar 2024 17:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 20:33:27.565950
- Title: CaveSeg: Deep Semantic Segmentation and Scene Parsing for Autonomous
Underwater Cave Exploration
- Title(参考訳): CaveSeg:自律型水中洞窟探査のための深部セマンティックセグメンテーションとシーンパーシング
- Authors: A. Abdullah, T. Barua, R. Tibbetts, Z. Chen, M. J. Islam, I. Rekleitis
- Abstract要約: CaveSegは、水中洞窟内のAUVナビゲーションのためのセマンティックセグメンテーションとシーン解析のための最初のビジュアル学習パイプラインである。
重要なナビゲーションマーカー(洞窟線、矢印など)、障害物(地平原や頭上層など)、スキューバダイバー、サーボのためのオープンエリアのためのピクセルアノテーションが含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present CaveSeg - the first visual learning pipeline for
semantic segmentation and scene parsing for AUV navigation inside underwater
caves. We address the problem of scarce annotated training data by preparing a
comprehensive dataset for semantic segmentation of underwater cave scenes. It
contains pixel annotations for important navigation markers (e.g. caveline,
arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and
open areas for servoing. Through comprehensive benchmark analyses on cave
systems in USA, Mexico, and Spain locations, we demonstrate that robust deep
visual models can be developed based on CaveSeg for fast semantic scene parsing
of underwater cave environments. In particular, we formulate a novel
transformer-based model that is computationally light and offers near real-time
execution in addition to achieving state-of-the-art performance. Finally, we
explore the design choices and implications of semantic segmentation for visual
servoing by AUVs inside underwater caves. The proposed model and benchmark
dataset open up promising opportunities for future research in autonomous
underwater cave exploration and mapping.
- Abstract(参考訳): 本稿では,水中洞窟におけるAUVナビゲーションのためのセマンティックセグメンテーションとシーン解析のための最初のビジュアル学習パイプラインであるCaveSegを紹介する。
水中洞窟シーンのセマンティックセマンティックセグメンテーションのための包括的データセットを作成し,注釈付きトレーニングデータの不足に対処する。
重要なナビゲーションマーカー(洞窟線、矢印など)、障害物(地平原や頭上層など)、スキューバダイバー、サーボのためのオープンエリアのためのピクセルアノテーションが含まれている。
米国、メキシコ、スペインの洞窟システムに関する包括的なベンチマーク分析を通じて、水中洞窟環境を高速に意味論的に解析するためのcavesegに基づく強固な深部視覚モデルの開発が可能であることを実証する。
特に,計算的に軽量で,リアルタイムに近い実行が可能なトランスフォーマーモデルを構築し,最先端性能を実現する。
最後に,水中洞窟内におけるAUVによる視覚サーボのためのセマンティックセグメンテーションの設計選択と意義について検討する。
提案されたモデルとベンチマークデータセットは、自律型水中洞窟探査とマッピングにおける将来の研究の有望な機会を開く。
関連論文リスト
- Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset [60.14089302022989]
水中視覚タスクは複雑な水中状況のため、しばしばセグメンテーションの精度が低い。
第1次大規模水中塩分分節データセット(USIS10K)を構築した。
本研究では,水中ドメインに特化してセグメンツ・ア・シング・モデル(USIS-SAM)に基づく水中塩分・インスタンス・アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-10T06:17:33Z) - Underwater Variable Zoom: Depth-Guided Perception Network for Underwater Image Enhancement [9.967324345793378]
水中可変ズーム(UVZ)と呼ばれる新しい深度誘導型知覚UIEフレームワークを提案する。
UVZは、予測された深度マップを利用することで、近距離シナリオを解析し、異なる領域における局所的および非局所的知覚を可能にする。
5つのベンチマークデータセットの実験は、UVZが優れた視覚的ゲインを達成し、有望な定量的指標を提供することを示した。
論文 参考訳(メタデータ) (2024-04-27T12:42:26Z) - GaussNav: Gaussian Splatting for Visual Navigation [92.13664084464514]
インスタンスイメージゴールナビゲーション(IIN)では、エージェントが探索されていない環境で、目標画像に描かれた特定のオブジェクトを見つける必要がある。
我々のフレームワークは3次元ガウススプラッティングに基づく新しい地図表現を構築する(3DGS)
我々のフレームワークは、Habitat-Matterport 3D(HM3D)データセットに挑戦するPath Length(SPL)が0.252から0.578に重み付けしたSuccessの増加によって証明された、パフォーマンスの著しい飛躍を示す。
論文 参考訳(メタデータ) (2024-03-18T09:56:48Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
三角特徴量からのスパース深度測定を融合して深度予測を改善する深度学習モデルを定式化する。
このネットワークは、前方に見える水中データセットFLSeaで教師ありの方法で訓練されている。
この方法は、ラップトップGPUで160FPS、単一のCPUコアで7FPSで実行することで、リアルタイムのパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-25T16:32:31Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
本稿では,水中ビジュアルオブジェクト追跡(UVOT)のための新しいデータセットと汎用トラッカ拡張手法を提案する。
水中環境は、一様でない照明条件、視界の低さ、鋭さの欠如、コントラストの低さ、カモフラージュ、懸濁粒子からの反射を示す。
本研究では,追尾品質の向上に特化して設計された水中画像強調アルゴリズムを提案する。
この手法により、最先端(SOTA)ビジュアルトラッカーの最大5.0%のAUCの性能が向上した。
論文 参考訳(メタデータ) (2023-08-30T07:41:26Z) - UDepth: Fast Monocular Depth Estimation for Visually-guided Underwater
Robots [4.157415305926584]
低コスト水中ロボットの3次元認識機能を実現するための高速な単眼深度推定法を提案する。
我々は,自然の水中シーンの画像形成特性に関するドメイン知識を取り入れた,UDepthという新しいエンド・ツー・エンドの深層学習パイプラインを定式化した。
論文 参考訳(メタデータ) (2022-09-26T01:08:36Z) - Polyline Based Generative Navigable Space Segmentation for Autonomous
Visual Navigation [57.3062528453841]
ロボットが教師なしの方法で移動可能な空間分割を学習できるようにするための表現学習ベースのフレームワークを提案する。
提案するPSV-Netは,単一のラベルを使わずとも,高精度で視覚ナビゲーション可能な空間を学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-29T19:50:48Z) - FathomNet: A global underwater image training set for enabling
artificial intelligence in the ocean [0.0]
オーシャンゴープラットフォームは、監視とナビゲーションのために高解像度のカメラフィードを統合することで、視覚データを大量に生成している。
機械学習の最近の進歩は、視覚データの高速かつ洗練された分析を可能にするが、海洋学の世界では成功しなかった。
FathomNetのデータに基づいてトレーニングされた機械学習モデルを、さまざまな機関のビデオデータに適用する方法を実証する。
論文 参考訳(メタデータ) (2021-09-29T18:08:42Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。