論文の概要: Clustered FedStack: Intermediate Global Models with Bayesian Information
Criterion
- arxiv url: http://arxiv.org/abs/2309.11044v2
- Date: Sat, 14 Oct 2023 23:44:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 03:30:05.044700
- Title: Clustered FedStack: Intermediate Global Models with Bayesian Information
Criterion
- Title(参考訳): クラスタ化feedstack:ベイズ情報基準を用いた中間的グローバルモデル
- Authors: Thanveer Shaik, Xiaohui Tao, Lin Li, Niall Higgins, Raj Gururajan,
Xujuan Zhou, Jianming Yong
- Abstract要約: 本稿では,Stacked Federated Learning(FedStack)フレームワークに基づいた,新しいClustered FedStackフレームワークを提案する。
ローカルクライアントはモデル予測と出力層重み付けをサーバに送信し、堅牢なグローバルモデルを構築します。
このグローバルモデルは、クラスタリングメカニズムを使用して出力層重みに基づいて、ローカルクライアントをクラスタ化する。
- 参考スコア(独自算出の注目度): 8.478300563501035
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) is currently one of the most popular technologies in
the field of Artificial Intelligence (AI) due to its collaborative learning and
ability to preserve client privacy. However, it faces challenges such as
non-identically and non-independently distributed (non-IID) and data with
imbalanced labels among local clients. To address these limitations, the
research community has explored various approaches such as using local model
parameters, federated generative adversarial learning, and federated
representation learning. In our study, we propose a novel Clustered FedStack
framework based on the previously published Stacked Federated Learning
(FedStack) framework. The local clients send their model predictions and output
layer weights to a server, which then builds a robust global model. This global
model clusters the local clients based on their output layer weights using a
clustering mechanism. We adopt three clustering mechanisms, namely K-Means,
Agglomerative, and Gaussian Mixture Models, into the framework and evaluate
their performance. We use Bayesian Information Criterion (BIC) with the maximum
likelihood function to determine the number of clusters. The Clustered FedStack
models outperform baseline models with clustering mechanisms. To estimate the
convergence of our proposed framework, we use Cyclical learning rates.
- Abstract(参考訳): フェデレーション学習(federated learning, fl)は、現在、人工知能(ai)の分野でもっともポピュラーなテクノロジの1つです。
しかし、非識別および非独立分散(非IID)や、ローカルクライアント間で不均衡なラベルを持つデータといった課題に直面している。
これらの制限に対処するため、研究コミュニティは、ローカルモデルパラメータ、フェデレーション生成逆学習、フェデレーション表現学習など、さまざまなアプローチを検討してきた。
本研究では、以前に公開されたStacked Federated Learning(FedStack)フレームワークに基づいた、新しいClustered FedStackフレームワークを提案する。
ローカルクライアントはモデル予測と出力層重みをサーバに送信し、堅牢なグローバルモデルを構築します。
このグローバルモデルは、クラスタリングメカニズムを使用して、出力層重みに基づいてローカルクライアントをクラスタ化する。
我々は,K-Means,Agglomerative,Gaussian Mixture Modelsという3つのクラスタリング機構をフレームワークに導入し,その性能を評価する。
クラスタ数を最大化するためにベイズ情報基準(BIC)を用いる。
Clustered FedStackモデルは、クラスタリングメカニズムでベースラインモデルを上回っます。
提案フレームワークの収束度を推定するために,循環学習率を用いる。
関連論文リスト
- A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
連邦学習(FL)の主な課題の1つは、非独立で同一に分散された(非IID)クライアントデータを扱うことである。
本稿では、クライアントをクラスタに関連付けるクラスタ化FLのための統一ベイズフレームワークを提案する。
この作業は、クライアントとクラスタの関連に関する洞察を提供し、新しい方法でクライアントの知識共有を可能にする。
論文 参考訳(メタデータ) (2024-10-20T19:11:24Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
フェデレートラーニング(Federated Learning, FL)は、分散機械学習のパラダイムである。
FLの主な課題の1つは、クライアントデバイスにまたがる不均一なデータ分散の存在である。
我々は,局所モデル重みとクライアントのデータ分布の相関を利用したCFLの新しい手法であるFedClustを提案する。
論文 参考訳(メタデータ) (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedClust: Optimizing Federated Learning on Non-IID Data through
Weight-Driven Client Clustering [28.057411252785176]
Federated Learning(FL)は、分散型デバイス上で、ローカルデータを公開せずにコラボレーティブなモデルトレーニングを可能にする、新興の分散機械学習パラダイムである。
本稿では,局所モデル重みとクライアントデータ分布の相関を利用した新しいCFL手法であるFedClustを提案する。
論文 参考訳(メタデータ) (2024-03-07T01:50:36Z) - Federated cINN Clustering for Accurate Clustered Federated Learning [33.72494731516968]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習に対する革新的なアプローチである。
本稿では,クライアントを複数のグループに頑健にクラスタリングするFederated cINN Clustering Algorithm (FCCA)を提案する。
論文 参考訳(メタデータ) (2023-09-04T10:47:52Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Timely Asynchronous Hierarchical Federated Learning: Age of Convergence [59.96266198512243]
クライアント-エッジ-クラウドフレームワークを用いた非同期階層型フェデレーション学習環境について検討する。
クライアントはトレーニングされたパラメータをエッジサーバと交換し、ローカルに集約されたモデルを更新する。
各クライアントの目標は、クライアントのタイムラインを維持しながら、グローバルモデルに収束することだ。
論文 参考訳(メタデータ) (2023-06-21T17:39:16Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Cluster-driven Graph Federated Learning over Multiple Domains [25.51716405561116]
グラフフェデレーション学習(FL)は、中央モデル(すなわち、学習)を扱う。
サーバ) プライバシに制約されたシナリオ。
本稿では,クラスタ型グラフフェデレーション学習(FedCG)を提案する。
論文 参考訳(メタデータ) (2021-04-29T19:31:19Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。