Delays in Reinforcement Learning
- URL: http://arxiv.org/abs/2309.11096v1
- Date: Wed, 20 Sep 2023 07:04:46 GMT
- Title: Delays in Reinforcement Learning
- Authors: Pierre Liotet
- Abstract summary: This dissertation aims to study the delay in the agent's observation of the state of the environment or in the execution of the agent's actions.
A wide spectrum of delays will be considered, and potential solutions will be presented.
- Score: 2.5835347022640254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Delays are inherent to most dynamical systems. Besides shifting the process
in time, they can significantly affect their performance. For this reason, it
is usually valuable to study the delay and account for it. Because they are
dynamical systems, it is of no surprise that sequential decision-making
problems such as Markov decision processes (MDP) can also be affected by
delays. These processes are the foundational framework of reinforcement
learning (RL), a paradigm whose goal is to create artificial agents capable of
learning to maximise their utility by interacting with their environment.
RL has achieved strong, sometimes astonishing, empirical results, but delays
are seldom explicitly accounted for. The understanding of the impact of delay
on the MDP is limited. In this dissertation, we propose to study the delay in
the agent's observation of the state of the environment or in the execution of
the agent's actions. We will repeatedly change our point of view on the problem
to reveal some of its structure and peculiarities. A wide spectrum of delays
will be considered, and potential solutions will be presented. This
dissertation also aims to draw links between celebrated frameworks of the RL
literature and the one of delays.
Related papers
- Adaptive Reinforcement Learning for Unobservable Random Delays [46.04329493317009]
We introduce a general framework that enables agents to adaptively handle unobservable and time-varying delays.<n>Specifically, the agent generates a matrix of possible future actions to handle both unpredictable delays and lost action packets sent over networks.<n>Our method significantly outperforms state-of-the-art approaches across a wide range of benchmark environments.
arXiv Detail & Related papers (2025-06-17T11:11:37Z) - Overclocking LLM Reasoning: Monitoring and Controlling Thinking Path Lengths in LLMs [52.663816303997194]
A key factor influencing answer quality is the length of the thinking stage.<n>This paper explores and exploits the mechanisms by which LLMs understand and regulate the length of their reasoning.<n>Our results demonstrate that this "overclocking" method mitigates overthinking, improves answer accuracy, and reduces inference latency.
arXiv Detail & Related papers (2025-06-08T17:54:33Z) - LLM-Enhanced Rapid-Reflex Async-Reflect Embodied Agent for Real-Time Decision-Making in Dynamically Changing Environments [6.227284273306464]
Delay in decision making emerges as a crucial yet insufficiently studied issue.<n>We propose a Time Conversion Mechanism (TCM) that translates delays in decision-making into equivalent simulation frames.<n>We present the Rapid-ReReflect Agent (RRARA), which couples a lightweight lightweight LLM-guided feedback module with a rule-based agent to enable immediate reactive behaviors.
arXiv Detail & Related papers (2025-06-08T17:09:26Z) - Rainbow Delay Compensation: A Multi-Agent Reinforcement Learning Framework for Mitigating Delayed Observation [10.511062258286335]
In real-world multi-agent systems, observation delays are ubiquitous, preventing agents from making decisions based on the environment's true state.<n>These discrete observation components with varying delay characteristics pose significant challenges for multi-agent reinforcement learning.<n>We first formulate the decentralized individual delay partially observable decision process (DSID-POMDP) by extending the standard Dec-POMDP.<n>We then propose the Rainbow Delay Compensation (RDC) framework for addressing individual delays, along with recommended implementations for its constituent modules.
arXiv Detail & Related papers (2025-05-06T14:47:56Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - DEER: A Delay-Resilient Framework for Reinforcement Learning with Variable Delays [26.032139258562708]
We propose $textbfDEER (Delay-resilient-Enhanced RL)$, a framework designed to effectively enhance the interpretability and address the random delay issues.
In a variety of delayed scenarios, the trained encoder can seamlessly integrate with standard RL algorithms without requiring additional modifications.
The results confirm that DEER is superior to state-of-the-art RL algorithms in both constant and random delay settings.
arXiv Detail & Related papers (2024-06-05T09:45:26Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Feedback Loops With Language Models Drive In-Context Reward Hacking [78.9830398771605]
We show that feedback loops can cause in-context reward hacking (ICRH)
We identify and study two processes that lead to ICRH: output-refinement and policy-refinement.
As AI development accelerates, the effects of feedback loops will proliferate.
arXiv Detail & Related papers (2024-02-09T18:59:29Z) - Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays [41.52768902667611]
Reinforcement learning (RL) is challenging in the common case of delays between events and their sensory perceptions.
We present a novel Auxiliary-Delayed Reinforcement Learning (AD-RL) method that leverages auxiliary tasks involving short delays to accelerate RL with long delays.
Specifically, AD-RL learns a value function for short delays and uses bootstrapping and policy improvement techniques to adjust it for long delays.
arXiv Detail & Related papers (2024-02-05T16:11:03Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
We propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories.
Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework.
arXiv Detail & Related papers (2024-02-01T15:18:33Z) - Reason for Future, Act for Now: A Principled Framework for Autonomous
LLM Agents with Provable Sample Efficiency [53.8779374188643]
We propose a principled framework with provable regret guarantees to orchestrate reasoning and acting.
Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon.
At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state.
arXiv Detail & Related papers (2023-09-29T16:36:39Z) - Delayed Reinforcement Learning by Imitation [31.932677462399468]
We present a novel algorithm that learns how to act in a delayed environment from undelayed demonstrations.
We show that DIDA obtains high performances with a remarkable sample efficiency on a variety of tasks.
arXiv Detail & Related papers (2022-05-11T15:27:33Z) - Revisiting State Augmentation methods for Reinforcement Learning with
Stochastic Delays [10.484851004093919]
This paper formally describes the notion of Markov Decision Processes (MDPs) with delays.
We show that delayed MDPs can be transformed into equivalent standard MDPs (without delays) with significantly simplified cost structure.
We employ this equivalence to derive a model-free Delay-Resolved RL framework and show that even a simple RL algorithm built upon this framework achieves near-optimal rewards in environments with delays in actions and observations.
arXiv Detail & Related papers (2021-08-17T10:45:55Z) - Enhancing reinforcement learning by a finite reward response filter with
a case study in intelligent structural control [0.0]
In many reinforcement learning (RL) problems, it takes some time until a taken action by the agent reaches its maximum effect on the environment.
This paper introduces an applicable enhanced Q-learning method in which at the beginning of the learning phase, the agent takes a single action.
We have applied the developed method to a structural control problem in which the goal of the agent is to reduce the vibrations of a building subjected to earthquake excitations with a specified delay.
arXiv Detail & Related papers (2020-10-25T19:28:35Z) - Stochastic bandits with arm-dependent delays [102.63128271054741]
We propose a simple but efficient UCB-based algorithm called the PatientBandits.
We provide both problems-dependent and problems-independent bounds on the regret as well as performance lower bounds.
arXiv Detail & Related papers (2020-06-18T12:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.