論文の概要: CPLLM: Clinical Prediction with Large Language Models
- arxiv url: http://arxiv.org/abs/2309.11295v2
- Date: Thu, 2 May 2024 16:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 22:20:15.561337
- Title: CPLLM: Clinical Prediction with Large Language Models
- Title(参考訳): CPLLM:大規模言語モデルによる臨床予測
- Authors: Ofir Ben Shoham, Nadav Rappoport,
- Abstract要約: 本稿では,臨床疾患に対するLLM(Pre-trained Large Language Model)の微調整と寛容予測を行う手法を提案する。
診断予測には,患者の来訪時に対象疾患と診断されるか,その後に診断されるかを,過去の診断記録を利用して予測する。
提案手法であるCPLLMは,PR-AUCおよびROC-AUCの指標で試験された全てのモデルを上回ることを示した。
- 参考スコア(独自算出の注目度): 0.07083082555458872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for clinical disease and readmission prediction. We utilized quantization and fine-tuned the LLM using prompts. For diagnosis prediction, we predict whether patients will be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical diagnosis records. We compared our results to various baselines, including RETAIN, and Med-BERT, the current state-of-the-art model for disease prediction using temporal structured EHR data. In addition, We also evaluated CPLLM for patient hospital readmission prediction and compared our method's performance with benchmark baselines. Our experiments have shown that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics, showing state-of-the-art results for diagnosis prediction and patient hospital readmission prediction. Such a method can be easily implemented and integrated into the clinical process to help care providers estimate the next steps of patients
- Abstract(参考訳): 本稿では,臨床疾患と寛容予測のための訓練済み大言語モデル(LLM)を微調整する手法として,CPLLM(Large Language Models)を用いた臨床予測を提案する。
我々は量子化を利用して、プロンプトを用いてLLMを微調整した。
診断予測には,患者の来訪時に対象疾患と診断されるか,その後に診断されるかを,過去の診断記録を利用して予測する。
我々は,この結果とRETAIN,Med-BERTなどの様々なベースラインを比較した。
また,CPLLMを患者病院入所予測用として評価し,本手法の性能をベンチマークベースラインと比較した。
提案手法であるCPLLMはPR-AUCおよびROC-AUCの指標で全試験モデルを上回り,診断予測と患者病院入院予測の最先端結果を示した。
このような方法を簡単に実装し、臨床プロセスに統合することで、医療提供者が患者の次のステップを見積もることができる。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - The Power of Combining Data and Knowledge: GPT-4o is an Effective Interpreter of Machine Learning Models in Predicting Lymph Node Metastasis of Lung Cancer [18.32753287825974]
リンパ節転移(LNM)は肺癌患者の早期治療を決定する重要な因子である。
近年,大きな言語モデル (LLM) が注目されている。
本稿では,LLMが取得した医療知識と機械学習モデルで同定した潜伏パターンを組み合わせた新しいアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T09:42:24Z) - LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction [38.11497959553319]
本研究では,構造化患者訪問データを自然言語物語に変換するための大規模言語モデルの適用可能性について検討する。
様々なERH予測指向のプロンプト戦略を用いて,LLMのゼロショット性能と少数ショット性能を評価した。
提案手法を用いることで,従来のERHによる疾患予測の教師付き学習法と比較して,LLMの精度は極めて低いことが示唆された。
論文 参考訳(メタデータ) (2024-03-19T18:10:13Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
EBMとAIベースの臨床モデルとのギャップを埋める技術を導入する。
集中治療(ICU)患者情報に基づいて患者固有の文献を自動的に検索するシステムを提案する。
我々のモデルは,最近の強靭なベースラインと比較して,3つの課題に対する予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-11-16T11:19:02Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。