論文の概要: A Competition-based Pricing Strategy in Cloud Markets using Regret
Minimization Techniques
- arxiv url: http://arxiv.org/abs/2309.11312v1
- Date: Wed, 20 Sep 2023 13:38:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 16:00:17.059370
- Title: A Competition-based Pricing Strategy in Cloud Markets using Regret
Minimization Techniques
- Title(参考訳): 後悔最小化手法を用いたクラウド市場における競争ベースの価格戦略
- Authors: S.Ghasemi, M.R.Meybodi, M.Dehghan, A.M.Rahmani
- Abstract要約: 本研究は,後悔最小化アルゴリズムに関連する価格ポリシーを提案し,不完全情報ゲームに適用する。
クラウドの競合ベースのマーケットプレースに基づいて、プロバイダは経験豊富な後悔を使って戦略の配布を更新する。
実験の結果は、他の価格政策と比較して、プロバイダの利益が大幅に増加したことを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cloud computing as a fairly new commercial paradigm, widely investigated by
different researchers, already has a great range of challenges. Pricing is a
major problem in Cloud computing marketplace; as providers are competing to
attract more customers without knowing the pricing policies of each other. To
overcome this lack of knowledge, we model their competition by an
incomplete-information game. Considering the issue, this work proposes a
pricing policy related to the regret minimization algorithm and applies it to
the considered incomplete-information game. Based on the competition based
marketplace of the Cloud, providers update the distribution of their strategies
using the experienced regret. The idea of iteratively applying the algorithm
for updating probabilities of strategies causes the regret get minimized
faster. The experimental results show much more increase in profits of the
providers in comparison with other pricing policies. Besides, the efficiency of
a variety of regret minimization techniques in a simulated marketplace of Cloud
are discussed which have not been observed in the studied literature. Moreover,
return on investment of providers in considered organizations is studied and
promising results appeared.
- Abstract(参考訳): クラウドコンピューティングは、さまざまな研究者によって広く研究されている、かなり新しい商用パラダイムである。
プロバイダが互いの価格ポリシーを知らずにより多くの顧客を引き付けようとしているため、価格設定はクラウドコンピューティングマーケットプレースにおいて大きな問題である。
この知識の欠如を克服するために、不完全な情報ゲームによってそれらの競争をモデル化する。
そこで本研究では,後悔最小化アルゴリズムに関連する価格政策を提案し,不完全な情報ゲームに適用する。
クラウドの競合ベースのマーケットプレースに基づいて、プロバイダは経験豊富な後悔を使って戦略の配布を更新する。
戦略の確率を更新するアルゴリズムを反復的に適用するというアイデアは、後悔を最小化する。
実験の結果は、他の価格政策と比較して、プロバイダの利益が大幅に増加したことを示している。
また,クラウドのシミュレーション市場における様々な後悔の最小化手法の有効性について検討したが,本研究の文献では確認されていない。
また、検討対象組織への提供者投資の見返りが研究され、有望な結果が得られた。
関連論文リスト
- Artificial Intelligence and Algorithmic Price Collusion in Two-sided Markets [9.053163124987535]
両市場において,Qラーニングを用いたAIエージェントが暗黙の共謀にどのように関与するかを検討する。
我々の実験によると、AI駆動プラットフォームはBertrandの競合よりも高いコラシオンレベルを実現している。
ネットワークの外部性の向上は、共謀を著しく向上させ、AIアルゴリズムがそれらを活用して利益を最大化することを示唆している。
論文 参考訳(メタデータ) (2024-07-04T17:57:56Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Multi-Agent Imitation Learning: Value is Easy, Regret is Hard [52.31989962031179]
我々は,エージェント群を協調させようとする学習者の視点で,マルチエージェント模倣学習(MAIL)問題を研究する。
MAILの以前の作業のほとんどは、基本的には、デモのサポート内で専門家の振る舞いにマッチする問題を減らすものです。
エージェントが戦略的でないという仮定の下で、学習者と専門家の間の価値ギャップをゼロにするのに十分であるが、戦略的エージェントによる逸脱を保証するものではない。
論文 参考訳(メタデータ) (2024-06-06T16:18:20Z) - By Fair Means or Foul: Quantifying Collusion in a Market Simulation with Deep Reinforcement Learning [1.5249435285717095]
本研究は、反復価格競争の実験的なオリゴポリーモデルを用いる。
我々は,エージェントが開発する戦略と価格パターンについて検討し,その結果を導出する可能性がある。
以上の結果から,RLをベースとしたAIエージェントは,超競争的価格帯電を特徴とする癒着状態に収束することが示唆された。
論文 参考訳(メタデータ) (2024-06-04T15:35:08Z) - Tacit algorithmic collusion in deep reinforcement learning guided price competition: A study using EV charge pricing game [0.0]
複雑な構造を持つゲームの価格設定のプレイヤーは、人工知能(AI)による学習アルゴリズムの採用が増えている。
正準形式のゲームに関する最近の研究は、無から高レベルの暗黙の共謀まで、対照的な主張を示している。
EV充電ハブが価格を動的に変動させることで競争する現実的なゲームを考える。
数値ケーススタディの結果,0.14~0.45の衝突指数値が得られた。
論文 参考訳(メタデータ) (2024-01-25T16:51:52Z) - Dynamic Pricing of Applications in Cloud Marketplaces using Game Theory [6.369406986434764]
本稿では,新しい動的価格戦略を提供するゲームとして,クラウドマーケットプレースを定量的にモデル化する。
競争ベースの価格政策を改善するために、提供者が登録する委員会が検討されている。
コミッショナーの使用により、ゲームは完全な情報となり、各プレイヤーは他のすべての支払い機能を認識している。
論文 参考訳(メタデータ) (2023-09-20T13:41:45Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
深層学習技術を用いて,日・店・店レベルでの顧客販売予測問題に対処する3つの方法を開発した。
実験結果から,データ前処理を最小限に抑えた単純なシーケンスアーキテクチャを用いて,優れた性能を実現することができることを示す。
提案した解は約0.54の RMSLE を達成し、Kaggle コンペティションで提案された問題に対する他のより具体的な解と競合する。
論文 参考訳(メタデータ) (2022-04-16T12:03:52Z) - A Sparsity Algorithm with Applications to Corporate Credit Rating [11.52337781510312]
提案手法は, 最適化問題を解くとともに, 反現実的説明の空間性を最大化する「スパーシティアルゴリズム」を提案する。
当社は、公開企業に対して、信用格付けを改善するための簡単な提案を行うために、スパーシリティアルゴリズムを適用している。
論文 参考訳(メタデータ) (2021-07-21T18:47:35Z) - Model-Free Online Learning in Unknown Sequential Decision Making
Problems and Games [114.90723492840499]
大規模な2人プレイのゼロサム情報ゲームでは、反事実後悔最小化(cfr)の現代的な拡張がnash均衡を計算するための実用的な技術である。
私たちは、戦略空間がエージェントに知られていないオンライン学習設定を形式化します。
エージェントが逆の環境に直面しても、その設定に高い確率で$O(T3/4)$後悔を達成する効率的なアルゴリズムを提供します。
論文 参考訳(メタデータ) (2021-03-08T04:03:24Z) - Competing Bandits: The Perils of Exploration Under Competition [99.68537519404727]
オンラインプラットフォーム上での探索と競争の相互作用について検討する。
私たちは、スタークコンペティションが企業に対して、低福祉につながる「欲張り」バンディットアルゴリズムにコミットするよう促すことに気付きました。
競争を弱めるための2つのチャンネルについて検討する。
論文 参考訳(メタデータ) (2020-07-20T14:19:08Z) - Hierarchical Adaptive Contextual Bandits for Resource Constraint based
Recommendation [49.69139684065241]
コンテキスト多重武装バンディット(MAB)は、様々な問題において最先端のパフォーマンスを達成する。
本稿では,階層型適応型文脈帯域幅法(HATCH)を提案する。
論文 参考訳(メタデータ) (2020-04-02T17:04:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。