論文の概要: How to turn your camera into a perfect pinhole model
- arxiv url: http://arxiv.org/abs/2309.11326v1
- Date: Wed, 20 Sep 2023 13:54:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 15:50:21.486277
- Title: How to turn your camera into a perfect pinhole model
- Title(参考訳): カメラを完璧なピンホールモデルに変える方法
- Authors: Ivan De Boi, Stuti Pathak, Marina Oliveira, Rudi Penne
- Abstract要約: 本稿では,画像からの歪みを除去する前処理ステップを含む新しいアプローチを提案する。
本手法は歪みモデルを仮定する必要がなく, 厳しい歪み画像に適用できる。
このモデルは、多くのアルゴリズムとアプリケーションの深刻なアップグレードを可能にします。
- 参考スコア(独自算出の注目度): 0.38233569758620056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camera calibration is a first and fundamental step in various computer vision
applications. Despite being an active field of research, Zhang's method remains
widely used for camera calibration due to its implementation in popular
toolboxes. However, this method initially assumes a pinhole model with
oversimplified distortion models. In this work, we propose a novel approach
that involves a pre-processing step to remove distortions from images by means
of Gaussian processes. Our method does not need to assume any distortion model
and can be applied to severely warped images, even in the case of multiple
distortion sources, e.g., a fisheye image of a curved mirror reflection. The
Gaussian processes capture all distortions and camera imperfections, resulting
in virtual images as though taken by an ideal pinhole camera with square
pixels. Furthermore, this ideal GP-camera only needs one image of a square grid
calibration pattern. This model allows for a serious upgrade of many algorithms
and applications that are designed in a pure projective geometry setting but
with a performance that is very sensitive to nonlinear lens distortions. We
demonstrate the effectiveness of our method by simplifying Zhang's calibration
method, reducing the number of parameters and getting rid of the distortion
parameters and iterative optimization. We validate by means of synthetic data
and real world images. The contributions of this work include the construction
of a virtual ideal pinhole camera using Gaussian processes, a simplified
calibration method and lens distortion removal.
- Abstract(参考訳): カメラキャリブレーションは、様々なコンピュータビジョンアプリケーションにおいて、最初の、そして基本的なステップである。
研究の活発な分野であるにもかかわらず、Zhangの手法は一般的なツールボックスに実装されているため、カメラキャリブレーションに広く使われている。
しかし、この方法は最初、単純化された歪みモデルを持つピンホールモデルを仮定する。
本研究では,ガウス過程を用いて画像から歪みを除去する前処理の手法を提案する。
本手法では歪みモデルを仮定する必要はなく,湾曲ミラー反射の魚眼画像のような複数の歪み源の場合であっても,厳しい歪み画像に適用することができる。
ガウス過程は全ての歪みとカメラの欠陥を捉え、仮想画像は正方形のピクセルを持つ理想的なピンホールカメラによって撮影される。
さらに、この理想的なGPカメラは、正方形格子キャリブレーションパターンの1つの画像のみを必要とする。
このモデルでは、純粋な射影幾何学的な設定で設計される多くのアルゴリズムやアプリケーションを、非線形レンズ歪みに非常に敏感な性能で真にアップグレードすることができる。
本手法は,zhangのキャリブレーション手法を単純化し,パラメータ数を削減し,歪みパラメータを除去し,反復最適化を行うことで有効性を示す。
合成データと実世界画像を用いて検証を行う。
本研究の貢献は、ガウス過程を用いた仮想理想ピンホールカメラの構築、簡易キャリブレーション法、レンズ歪み除去などである。
関連論文リスト
- RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation [88.54817424560056]
局所歪みの度合いと方向を測定する歪みベクトルマップ(DVM)を提案する。
DVMを学習することで、大域的な歪みパターンに頼ることなく、各ピクセルの局所歪みを独立に識別することができる。
事前学習段階では、歪みベクトルマップを予測し、各画素の局所歪み特徴を知覚する。
微調整段階では、魚眼画像修正のための画素単位のフローマップを予測する。
論文 参考訳(メタデータ) (2024-06-27T06:38:56Z) - Single-image camera calibration with model-free distortion correction [0.0]
本稿では,センサ全体をカバーする平面スペックルパターンの単一画像から,キャリブレーションパラメータの完全な集合を推定する方法を提案する。
デジタル画像相関を用いて校正対象の画像点と物理点との対応を求める。
プロシージャの最後には、画像全体にわたって、密度が高く均一なモデルフリーな歪みマップが得られる。
論文 参考訳(メタデータ) (2024-03-02T16:51:35Z) - An Adaptive Method for Camera Attribution under Complex Radial
Distortion Corrections [77.34726150561087]
インカメラまたはインカメラソフトウェア/アサートウェアは、PRNUベースのカメラ属性を妨げるために、画像の支持グリッドを変更する。
この問題に対処する既存のソリューションは、計算負荷を抑制するために、数変数でパラメータ化された半径変換を用いて補正を反転/推定しようとする。
本稿では,Adobe Lightroom, Photoshop, Gimp, PT-Lensといったサードパーティ製ソフトウェアが適用したような高度な補正を,同心円に分割することで実現する適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-28T08:44:00Z) - TartanCalib: Iterative Wide-Angle Lens Calibration using Adaptive
SubPixel Refinement of AprilTags [23.568127229446965]
現在の最先端技術による広角レンズの校正は、エッジの極端に歪みがあるため、結果を得られない。
精度の高い広角キャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2022-10-05T18:57:07Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
汎用カメラモデルの効率的なファミリーを用いてシーケンスごとのキャリブレーションパラメータを回帰する学習アルゴリズムを提案する。
提案手法は,サブピクセル再投射誤差による自己校正を行い,他の学習手法よりも優れる。
論文 参考訳(メタデータ) (2021-12-06T19:42:05Z) - Rethinking Generic Camera Models for Deep Single Image Camera
Calibration to Recover Rotation and Fisheye Distortion [8.877834897951578]
本稿では,様々な歪みに対処可能な汎用カメラモデルを提案する。
提案手法は,市販の魚眼カメラで撮影した2つの大規模データセットと画像に対して,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-25T05:58:23Z) - Self-Calibrating Neural Radiance Fields [68.64327335620708]
キャリブレーション対象のないシーンの幾何学と正確なカメラパラメータを共同で学習する。
我々のカメラモデルは、ピンホールモデル、第4次ラジアル歪み、および任意の非線形カメラ歪みを学習可能な汎用ノイズモデルで構成されている。
論文 参考訳(メタデータ) (2021-08-31T13:34:28Z) - How to Calibrate Your Event Camera [58.80418612800161]
画像再構成を用いた汎用イベントカメラキャリブレーションフレームワークを提案する。
ニューラルネットワークに基づく画像再構成は,イベントカメラの内在的・外在的キャリブレーションに適していることを示す。
論文 参考訳(メタデータ) (2021-05-26T07:06:58Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
広角画像は、基礎となるピンホールカメラモデルに反する歪みを含む。
これらの歪みを補正することを目的とした画像修正は、これらの問題を解決することができる。
本稿では、異なるアプローチで使用されるカメラモデルについて、詳細な説明と議論を行う。
次に,従来の幾何学に基づく画像修正手法と深層学習法の両方について検討する。
論文 参考訳(メタデータ) (2020-10-30T17:28:40Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
より高精度なパラメータを効率良く得る新しい歪み補正手法を提案する。
本研究では, 局所言語関連推定ネットワークを設計し, 順序歪みを学習し, 現実的な歪み分布を近似する。
歪み情報の冗長性を考慮すると,本手法では歪み画像の一部のみを用いて順序方向の歪み推定を行う。
論文 参考訳(メタデータ) (2020-07-21T10:03:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。