Knowledge Graph Question Answering for Materials Science (KGQA4MAT): Developing Natural Language Interface for Metal-Organic Frameworks Knowledge Graph (MOF-KG) Using LLM
- URL: http://arxiv.org/abs/2309.11361v2
- Date: Thu, 6 Jun 2024 15:35:09 GMT
- Title: Knowledge Graph Question Answering for Materials Science (KGQA4MAT): Developing Natural Language Interface for Metal-Organic Frameworks Knowledge Graph (MOF-KG) Using LLM
- Authors: Yuan An, Jane Greenberg, Alex Kalinowski, Xintong Zhao, Xiaohua Hu, Fernando J. Uribe-Romo, Kyle Langlois, Jacob Furst, Diego A. Gómez-Gualdrón,
- Abstract summary: We present a benchmark dataset for Knowledge Graph Question Answering in Materials Science (KGQA4MAT)
A knowledge graph for metal-organic frameworks (MOF-KG) has been constructed by integrating structured databases and knowledge extracted from the literature.
We have developed a benchmark comprised of 161 complex questions involving comparison, aggregation, and complicated graph structures.
- Score: 35.208135795371795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive benchmark dataset for Knowledge Graph Question Answering in Materials Science (KGQA4MAT), with a focus on metal-organic frameworks (MOFs). A knowledge graph for metal-organic frameworks (MOF-KG) has been constructed by integrating structured databases and knowledge extracted from the literature. To enhance MOF-KG accessibility for domain experts, we aim to develop a natural language interface for querying the knowledge graph. We have developed a benchmark comprised of 161 complex questions involving comparison, aggregation, and complicated graph structures. Each question is rephrased in three additional variations, resulting in 644 questions and 161 KG queries. To evaluate the benchmark, we have developed a systematic approach for utilizing the LLM, ChatGPT, to translate natural language questions into formal KG queries. We also apply the approach to the well-known QALD-9 dataset, demonstrating ChatGPT's potential in addressing KGQA issues for different platforms and query languages. The benchmark and the proposed approach aim to stimulate further research and development of user-friendly and efficient interfaces for querying domain-specific materials science knowledge graphs, thereby accelerating the discovery of novel materials.
Related papers
- A large collection of bioinformatics question-query pairs over federated knowledge graphs: methodology and applications [0.0838491111002084]
We introduce a large collection of human-written natural language questions and their corresponding SPARQL queries over federated bioinformatics knowledge graphs.
We propose a methodology to uniformly represent the examples with minimal metadata, based on existing standards.
arXiv Detail & Related papers (2024-10-08T13:08:07Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
We studied the impact of contextual knowledge on the Question-answering (QA) objective using pre-trained language models (LMs) and knowledge graphs (KGs)
We found that incorporating knowledge facts context led to a significant improvement in performance.
This suggests that the integration of contextual knowledge facts may be more impactful for enhancing question answering performance.
arXiv Detail & Related papers (2023-12-31T03:51:31Z) - Knowledge Graph for NLG in the context of conversational agents [0.0]
We provide a review of different architectures used for knowledge graph-to-text generation including: Graph Neural Networks, the Graph Transformer, and linearization with seq2seq models.
We aim to refine benchmark datasets of kg-to-text generation on PLMs and to explore the emotional and multilingual dimensions in our future work.
arXiv Detail & Related papers (2023-07-04T08:03:33Z) - Knowledge Graphs Querying [4.548471481431569]
We aim at uniting different interdisciplinary topics and concepts that have been developed for KG querying.
Recent advances on KG and query embedding, multimodal KG, and KG-QA come from deep learning, IR, NLP, and computer vision domains.
arXiv Detail & Related papers (2023-05-23T19:32:42Z) - Relation-Aware Language-Graph Transformer for Question Answering [21.244992938222246]
We propose Question Answering Transformer (QAT), which is designed to jointly reason over language and graphs with respect to entity relations.
Specifically, QAT constructs Meta-Path tokens, which learn relation-centric embeddings based on diverse structural and semantic relations.
We validate the effectiveness of QAT on commonsense question answering datasets like CommonsenseQA and OpenBookQA, and on a medical question answering dataset, MedQA-USMLE.
arXiv Detail & Related papers (2022-12-02T05:10:10Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
We extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG)
First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network (KNN), which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information.
To handle the diversity and complexity of KG information, we propose a Contextualized Knowledge-aware Attentive Neural Network (CKANN), which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network (GCN) and comprehensively learns context-based and knowledge-based sentence representation via
arXiv Detail & Related papers (2021-04-12T05:52:20Z) - JAKET: Joint Pre-training of Knowledge Graph and Language Understanding [73.43768772121985]
We propose a novel joint pre-training framework, JAKET, to model both the knowledge graph and language.
The knowledge module and language module provide essential information to mutually assist each other.
Our design enables the pre-trained model to easily adapt to unseen knowledge graphs in new domains.
arXiv Detail & Related papers (2020-10-02T05:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.