Large Language Model Powered Decision Support for a Metal Additive Manufacturing Knowledge Graph
- URL: http://arxiv.org/abs/2505.20308v2
- Date: Mon, 28 Jul 2025 05:26:47 GMT
- Title: Large Language Model Powered Decision Support for a Metal Additive Manufacturing Knowledge Graph
- Authors: Muhammad Tayyab Khan, Lequn Chen, Wenhe Feng, Seung Ki Moon,
- Abstract summary: Metal additive manufacturing (AM) involves complex interdependencies among processes, materials, feedstock, and post-processing steps.<n>We develop a novel and structured knowledge graph (KG) representing 53 distinct metals and alloys across seven material categories, nine AM processes, four feedstock types, and corresponding post-processing requirements.<n>A large language model (LLM) interface, guided by a few-shot prompting strategy, enables natural language querying without the need for formal query syntax.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metal additive manufacturing (AM) involves complex interdependencies among processes, materials, feedstock, and post-processing steps. However, the underlying relationships and domain knowledge remain fragmented across literature and static databases that often require expert-level queries, limiting their applicability in design and planning. To address these limitations, we develop a novel and structured knowledge graph (KG), representing 53 distinct metals and alloys across seven material categories, nine AM processes, four feedstock types, and corresponding post-processing requirements. A large language model (LLM) interface, guided by a few-shot prompting strategy, enables natural language querying without the need for formal query syntax. The system supports a range of tasks, including compatibility evaluation, constraint-based filtering, and design for AM (DfAM) guidance. User queries in natural language are normalized, translated into Cypher, and executed on the KG, with results returned in a structured format. This work introduces the first interactive system that connects a domain-specific metal AM KG with an LLM interface, delivering accessible and explainable decision support for engineers and promoting human-centered tools in manufacturing knowledge systems.
Related papers
- Enhancing Manufacturing Knowledge Access with LLMs and Context-aware Prompting [9.520082987178851]
Large Language Models (LLMs) can automatically translate natural language queries into the SPARQL format.<n>We evaluate strategies that use LLMs as mediators to facilitate information retrieval from Knowledge graphs (KGs)<n>Our findings show that LLMs can significantly improve their performance on generating correct and complete queries when provided only the adequate context of the KG schema.
arXiv Detail & Related papers (2025-07-30T12:39:01Z) - Benchmarking Multimodal Understanding and Complex Reasoning for ESG Tasks [56.350173737493215]
Environmental, Social, and Governance (ESG) reports are essential for evaluating sustainability practices, ensuring regulatory compliance, and promoting financial transparency.<n>MMESGBench is a first-of-its-kind benchmark dataset to evaluate multimodal understanding and complex reasoning across structurally diverse and multi-source ESG documents.<n>MMESGBench comprises 933 validated QA pairs derived from 45 ESG documents, spanning across seven distinct document types and three major ESG source categories.
arXiv Detail & Related papers (2025-07-25T03:58:07Z) - Text-to-SPARQL Goes Beyond English: Multilingual Question Answering Over Knowledge Graphs through Human-Inspired Reasoning [51.203811759364925]
mKGQAgent breaks down the task of converting natural language questions into SPARQL queries into modular, interpretable subtasks.<n> Evaluated on the DBpedia- and Corporate-based KGQA benchmarks within the Text2SPARQL challenge 2025, our approach took first place among the other participants.
arXiv Detail & Related papers (2025-07-22T19:23:03Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.<n>This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models [58.45517851437422]
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding.<n>Existing solutions often rely on task-specific architectures and objectives for individual tasks.<n>In this paper, we introduce Omni V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis.
arXiv Detail & Related papers (2025-02-22T09:32:01Z) - Augmented Knowledge Graph Querying leveraging LLMs [2.5311562666866494]
We introduce SparqLLM, a framework that enhances the querying of Knowledge Graphs (KGs)<n>SparqLLM executes the Extract, Transform, and Load (ETL) pipeline to construct KGs from raw data.<n>It also features a natural language interface powered by Large Language Models (LLMs) to enable automatic SPARQL query generation.
arXiv Detail & Related papers (2025-02-03T12:18:39Z) - MST5 -- Multilingual Question Answering over Knowledge Graphs [1.6470999044938401]
Knowledge Graph Question Answering (KGQA) simplifies querying vast amounts of knowledge stored in a graph-based model using natural language.
Existing multilingual KGQA systems face challenges in achieving performance comparable to English systems.
We propose a simplified approach to enhance multilingual KGQA systems by incorporating linguistic context and entity information directly into the processing pipeline of a language model.
arXiv Detail & Related papers (2024-07-08T15:37:51Z) - An Interactive Multi-modal Query Answering System with Retrieval-Augmented Large Language Models [21.892975397847316]
We present an interactive Multi-modal Query Answering (MQA) system, empowered by our newly developed multi-modal retrieval framework and navigation graph index.
One notable aspect of MQA is its utilization of contrastive learning to assess the significance of different modalities.
The system achieves efficient retrieval through our advanced navigation graph index, refined using computational pruning techniques.
arXiv Detail & Related papers (2024-07-05T02:01:49Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQA is a framework designed to generate logical forms through direct interaction with knowledge bases (KBs)<n>Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets.
arXiv Detail & Related papers (2024-02-23T06:32:18Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - Eliciting Human Preferences with Language Models [56.68637202313052]
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts.
We propose to use *LMs themselves* to guide the task specification process.
We study GATE in three domains: email validation, content recommendation, and moral reasoning.
arXiv Detail & Related papers (2023-10-17T21:11:21Z) - Knowledge Graph Question Answering for Materials Science (KGQA4MAT): Developing Natural Language Interface for Metal-Organic Frameworks Knowledge Graph (MOF-KG) Using LLM [35.208135795371795]
We present a benchmark dataset for Knowledge Graph Question Answering in Materials Science (KGQA4MAT)
A knowledge graph for metal-organic frameworks (MOF-KG) has been constructed by integrating structured databases and knowledge extracted from the literature.
We have developed a benchmark comprised of 161 complex questions involving comparison, aggregation, and complicated graph structures.
arXiv Detail & Related papers (2023-09-20T14:43:43Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
We propose knOwledge REasOning empowered Language Model (OREO-LM)
OREO-LM consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs.
We show significant performance gain, achieving state-of-art results in the Closed-Book setting.
arXiv Detail & Related papers (2022-11-15T18:26:26Z) - Natural Language Processing for Systems Engineering: Automatic
Generation of Systems Modelling Language Diagrams [0.10312968200748115]
An approach is proposed to assist systems engineers in the automatic generation of systems diagrams from unstructured natural language text.
The intention is to provide the users with a more standardised, comprehensive and automated starting point onto which subsequently refine and adapt the diagrams according to their needs.
arXiv Detail & Related papers (2022-08-09T19:20:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.