CellSecure: Securing Image Data in Industrial Internet-of-Things via Cellular Automata and Chaos-Based Encryption
- URL: http://arxiv.org/abs/2309.11476v1
- Date: Wed, 20 Sep 2023 17:22:01 GMT
- Title: CellSecure: Securing Image Data in Industrial Internet-of-Things via Cellular Automata and Chaos-Based Encryption
- Authors: Hassan Ali, Muhammad Shahbaz Khan, Maha Driss, Jawad Ahmad, William J. Buchanan, Nikolaos Pitropakis,
- Abstract summary: This paper proposes a robust image encryption algorithm tailored for Industrial IoT (IIoT) and Cyber-Physical Systems (CPS)
The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution.
Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002.
- Score: 2.4996518152484413
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the era of Industrial IoT (IIoT) and Industry 4.0, ensuring secure data transmission has become a critical concern. Among other data types, images are widely transmitted and utilized across various IIoT applications, ranging from sensor-generated visual data and real-time remote monitoring to quality control in production lines. The encryption of these images is essential for maintaining operational integrity, data confidentiality, and seamless integration with analytics platforms. This paper addresses these critical concerns by proposing a robust image encryption algorithm tailored for IIoT and Cyber-Physical Systems (CPS). The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution. The Rule 30 cellular automata serves as an efficient mechanism for generating pseudo-random sequences that enable fast encryption and decryption cycles suitable for real-time sensor data in industrial settings. Most importantly, it induces non-linearity in the encryption algorithm. Furthermore, to increase the chaotic range and keyspace of the algorithm, which is vital for security in distributed industrial networks, a hybrid chaotic map, i.e., logistic-sine map is utilized. Extensive security analysis has been carried out to validate the efficacy of the proposed algorithm. Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002. This enhances the algorithm's resilience against potential cyber-attacks in the industrial domain.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Advancing Biomedical Signal Security: Real-Time ECG Monitoring with Chaotic Encryption [0.0]
We develop a real time ECG monitoring system that integrates chaotic encryption to protect the integrity and confidentiality of ECG signals.
Results demonstrate that chaotic encryption is effective in enhancing data security.
System's real time disease detection model, based on deep learning, operates seamlessly with encrypted data, providing accurate diagnosis without compromising security.
arXiv Detail & Related papers (2024-11-02T17:08:14Z) - DCT-CryptoNets: Scaling Private Inference in the Frequency Domain [8.084341432899954]
homomorphic encryption (FHE) and machine learning offer unprecedented opportunities for private inference of sensitive data.
FHE enables computation directly on encrypted data, safeguarding the entire machine learning pipeline, including data and model confidentiality.
Existing FHE-based implementations for deep neural networks face challenges in computational cost, latency, and scalability.
This paper introduces DCT-CryptoNets, a novel approach that leverages frequency-domain learning to tackle these issues.
arXiv Detail & Related papers (2024-08-27T17:48:29Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - RNA-TransCrypt: Image Encryption Using Chaotic RNA Encoding, Novel Transformative Substitution, and Tailored Cryptographic Operations [2.2351927942921366]
RNA-TransCrypt is a novel image encryption scheme that is highly secure but also efficient and lightweight.
RNA-TransCrypt integrates the biocryptographic properties of RNA encoding with the non-linearity and unpredictability of chaos theory.
arXiv Detail & Related papers (2024-01-09T18:11:12Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - NEQRX: Efficient Quantum Image Encryption with Reduced Circuit Complexity [2.7985570786346745]
We propose an efficient implementation scheme for a quantum image encryption algorithm combining the generalized affine transform and logistic map.
We achieve a remarkable 50% reduction in cost while maintaining security and efficiency.
arXiv Detail & Related papers (2022-04-14T10:15:23Z) - Privacy-Preserving Image Acquisition Using Trainable Optical Kernel [50.1239616836174]
We propose a trainable image acquisition method that removes the sensitive identity revealing information in the optical domain before it reaches the image sensor.
As the sensitive content is suppressed before it reaches the image sensor, it does not enter the digital domain therefore is unretrievable by any sort of privacy attack.
arXiv Detail & Related papers (2021-06-28T11:08:14Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.