A Novel Feature-Aware Chaotic Image Encryption Scheme For Data Security and Privacy in IoT and Edge Networks
- URL: http://arxiv.org/abs/2505.00593v1
- Date: Thu, 01 May 2025 15:26:48 GMT
- Title: A Novel Feature-Aware Chaotic Image Encryption Scheme For Data Security and Privacy in IoT and Edge Networks
- Authors: Muhammad Shahbaz Khan, Ahmed Al-Dubai, Jawad Ahmad, Nikolaos Pitropakis, Baraq Ghaleb,
- Abstract summary: Security of image data in the Internet of Things (IoT) and edge networks is crucial.<n>Traditional encryption algorithms such as AES and RSA are computationally expensive for resource-constrained IoT devices.<n>This paper proposes a novel Feature-Aware Chaotic Image Encryption scheme.
- Score: 2.0189209920381774
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The security of image data in the Internet of Things (IoT) and edge networks is crucial due to the increasing deployment of intelligent systems for real-time decision-making. Traditional encryption algorithms such as AES and RSA are computationally expensive for resource-constrained IoT devices and ineffective for large-volume image data, leading to inefficiencies in privacy-preserving distributed learning applications. To address these concerns, this paper proposes a novel Feature-Aware Chaotic Image Encryption scheme that integrates Feature-Aware Pixel Segmentation (FAPS) with Chaotic Chain Permutation and Confusion mechanisms to enhance security while maintaining efficiency. The proposed scheme consists of three stages: (1) FAPS, which extracts and reorganizes pixels based on high and low edge intensity features for correlation disruption; (2) Chaotic Chain Permutation, which employs a logistic chaotic map with SHA-256-based dynamically updated keys for block-wise permutation; and (3) Chaotic chain Confusion, which utilises dynamically generated chaotic seed matrices for bitwise XOR operations. Extensive security and performance evaluations demonstrate that the proposed scheme significantly reduces pixel correlation -- almost zero, achieves high entropy values close to 8, and resists differential cryptographic attacks. The optimum design of the proposed scheme makes it suitable for real-time deployment in resource-constrained environments.
Related papers
- Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy [51.028047763426265]
Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information.<n> transmitting semantic-rich data over insecure channels introduces privacy risks.<n>This paper proposes a novel SemCom framework that integrates differential privacy mechanisms to protect sensitive semantic features.
arXiv Detail & Related papers (2025-04-23T08:42:44Z) - Optimizing Secure Quantum Information Transmission in Entanglement-Assisted Quantum Networks [0.0]
This work addresses issues by integrating Quantum Key Distribution (QKD) with Multi-Layer Chaotic Encryption.<n>The framework offers a future-proof approach for defining secure communication protocols in crucial sectors such as medical treatment, forensic computing, and national security.
arXiv Detail & Related papers (2025-01-17T00:51:37Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Enabling Practical and Privacy-Preserving Image Processing [5.526464269029825]
Homomorphic Encryption (FHE) enables computations on encrypted data, preserving confidentiality without the need for decryption.
Traditional FHE methods often encrypt images by monolithic data blocks, instead of pixels.
We propose and implement a pixel-level homomorphic encryption approach, iCHEETAH, based on the CKKS scheme.
arXiv Detail & Related papers (2024-09-05T14:22:02Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - RNA-TransCrypt: Image Encryption Using Chaotic RNA Encoding, Novel Transformative Substitution, and Tailored Cryptographic Operations [2.2351927942921366]
RNA-TransCrypt is a novel image encryption scheme that is highly secure but also efficient and lightweight.
RNA-TransCrypt integrates the biocryptographic properties of RNA encoding with the non-linearity and unpredictability of chaos theory.
arXiv Detail & Related papers (2024-01-09T18:11:12Z) - CellSecure: Securing Image Data in Industrial Internet-of-Things via Cellular Automata and Chaos-Based Encryption [2.4996518152484413]
This paper proposes a robust image encryption algorithm tailored for Industrial IoT (IIoT) and Cyber-Physical Systems (CPS)
The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution.
Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002.
arXiv Detail & Related papers (2023-09-20T17:22:01Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.