Robust Finite-Temperature Many-Body Scarring on a Quantum Computer
- URL: http://arxiv.org/abs/2309.11543v2
- Date: Thu, 10 Oct 2024 14:25:01 GMT
- Title: Robust Finite-Temperature Many-Body Scarring on a Quantum Computer
- Authors: Jean-Yves Desaules, Erik J. Gustafson, Andy C. Y. Li, Zlatko Papić, Jad C. Halimeh,
- Abstract summary: Mechanisms for suppressing thermalization in disorder-free many-body systems have attracted much interest.
We utilize IBM's Kolkata quantum processor to demonstrate an unexpected robustness of quantum many-body scars at finite temperatures.
- Score: 0.0
- License:
- Abstract: Mechanisms for suppressing thermalization in disorder-free many-body systems, such as Hilbert space fragmentation and quantum many-body scars, have recently attracted much interest in foundations of quantum statistical physics and potential quantum information processing applications. However, their sensitivity to realistic effects such as finite temperature remains largely unexplored. Here, we have utilized IBM's Kolkata quantum processor to demonstrate an unexpected robustness of quantum many-body scars at finite temperatures when the system is prepared in a thermal Gibbs ensemble. We identify such robustness in the PXP model, which describes quantum many-body scars in experimental systems of Rydberg atom arrays and ultracold atoms in tilted Bose--Hubbard optical lattices. By contrast, other theoretical models which host exact quantum many-body scars are found to lack such robustness, and their scarring properties quickly decay with temperature. Our study sheds light on the important differences between scarred models in terms of their algebraic structures, which impacts their resilience to finite temperature.
Related papers
- Uncovering Quantum Many-body Scars with Quantum Machine Learning [3.8822047197572975]
We employ tools from quantum machine learning -- specifically, quantum convolutional neural networks (QCNNs) -- to explore hidden non-thermal states in quantum many-body systems.
Our simulations demonstrate that QCNNs achieve over 99% single-shot measurement accuracy in identifying all known scars.
We successfully identify new non-thermal states in models such as the xorX model, the PXP model, and the far-coupling Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2024-09-11T16:49:07Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Prominent quantum many-body scars in a truncated Schwinger model [0.0]
We show that quantum many-body scars exist in a truncated version of the Schwinger model.
Our conclusions can be readily tested in current cold-atom setups.
arXiv Detail & Related papers (2022-04-04T18:00:01Z) - Robust quantum many-body scars in lattice gauge theories [0.0]
We show how quantum many-body scars can be made robust in the presence of experimental errors.
Our findings are explained by the concept of quantum Zeno dynamics.
arXiv Detail & Related papers (2022-03-16T18:00:01Z) - Observation of many-body scarring in a Bose--Hubbard quantum simulator [6.039858993863839]
We realize many-body scarring in a Bose-Hubbard quantum simulator from previously unknown initial conditions.
We demonstrate that scarring traps the many-body system in a low-entropy subspace.
arXiv Detail & Related papers (2022-01-03T19:00:00Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Extensive multipartite entanglement from su(2) quantum many-body scars [0.0]
We numerically study signatures of multipartite entanglement in the PXP model of Rydberg atoms.
Our results identify a rich multipartite correlation structure of scarred states with significant potential as a resource in quantum enhanced metrology.
arXiv Detail & Related papers (2021-09-20T17:56:04Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.