論文の概要: Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning
- arxiv url: http://arxiv.org/abs/2309.11722v2
- Date: Tue, 26 Sep 2023 04:02:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 20:35:47.713626
- Title: Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning
- Title(参考訳): フェデレート学習におけるデータ共有のための効率的なコア選択インセンティブメカニズム
- Authors: Mengda Ji, Genjiu Xu, Jianjun Ge, Mingqiang Li
- Abstract要約: フェデレーテッド・ラーニング(Federated Learning)は、参加者のデータを使って改善されたグローバルモデルをトレーニングする分散機械学習システムである。
データを真に入力し、安定した協力を促進するインセンティブメカニズムの確立は、検討すべき重要な問題となっている。
本稿では,サンプリング近似に基づく効率的なコア選択機構を提案する。
- 参考スコア(独自算出の注目度): 0.12289361708127873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a distributed machine learning system that uses
participants' data to train an improved global model. In federated learning,
participants cooperatively train a global model, and they will receive the
global model and payments. Rational participants try to maximize their
individual utility, and they will not input their high-quality data truthfully
unless they are provided with satisfactory payments based on their data
quality. Furthermore, federated learning benefits from the cooperative
contributions of participants. Accordingly, how to establish an incentive
mechanism that both incentivizes inputting data truthfully and promotes stable
cooperation has become an important issue to consider. In this paper, we
introduce a data sharing game model for federated learning and employ
game-theoretic approaches to design a core-selecting incentive mechanism by
utilizing a popular concept in cooperative games, the core. In federated
learning, the core can be empty, resulting in the core-selecting mechanism
becoming infeasible. To address this, our core-selecting mechanism employs a
relaxation method and simultaneously minimizes the benefits of inputting false
data for all participants. However, this mechanism is computationally expensive
because it requires aggregating exponential models for all possible coalitions,
which is infeasible in federated learning. To address this, we propose an
efficient core-selecting mechanism based on sampling approximation that only
aggregates models on sampled coalitions to approximate the exact result.
Extensive experiments verify that the efficient core-selecting mechanism can
incentivize inputting high-quality data and stable cooperation, while it
reduces computational overhead compared to the core-selecting mechanism.
- Abstract(参考訳): フェデレーテッド・ラーニング(Federated Learning)は、参加者のデータを使って改善されたグローバルモデルをトレーニングする分散機械学習システムである。
連合学習では、参加者が協力してグローバルモデルをトレーニングし、グローバルモデルと支払いを受け取る。
合理的な参加者は、個々のユーティリティを最大化しようと試み、データ品質に基づいて満足な支払いが得られない限り、彼らの高品質なデータを真実に入力しない。
さらに,参加者の協力的貢献から,連合学習のメリットが得られた。
したがって、データの入力を真にインセンティブ化し、安定した協調を促進するインセンティブメカニズムの確立は、検討すべき重要な課題となっている。
本稿では,協調学習のためのデータ共有ゲームモデルを紹介し,協調学習における一般的な概念であるコアを用いて,コア選択インセンティブ機構を設計するためのゲーム理論的手法を提案する。
連合学習では、コアは空になり、コア選択機構が実現不可能になる。
これに対処するために,我々はリラクゼーション方式を採用し,すべての参加者に対して偽データ入力のメリットを最小化している。
しかし、このメカニズムは、連合学習では実現不可能な全ての連立の指数モデルを集約する必要があるため、計算的に高価である。
そこで本研究では,サンプリング近似に基づく効率的なコア選択機構を提案する。
大規模な実験により、効率的なコア選択機構は高品質なデータ入力と安定した協調を動機付けることができるが、コア選択機構と比較して計算オーバーヘッドを低減できる。
関連論文リスト
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
フェデレーション学習は、分散クライアントがローカルデータを使用して機械学習モデルを協調的にトレーニングするためのフレームワークである。
分散環境のための効率的パーソナライズされたフェデレーション学習アルゴリズムであるFedSPDを提案する。
低接続性ネットワークにおいてもFedSPDが正確なモデルを学ぶことを示す。
論文 参考訳(メタデータ) (2024-10-24T15:48:34Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
有効指標としてAUPRC(Area Under Precision-Recall)を導入した。
サーバーレスのマルチパーティ共同トレーニングは、サーバーノードのボトルネックを避けることで通信コストを削減できる。
本稿では,AUPRCを直接最適化する ServerLess biAsed sTochastic gradiEnt (SLATE) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-06T06:51:32Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - FedGrad: Optimisation in Decentralised Machine Learning [0.0]
フェデレートラーニング(Federated Learning)は、機械学習モデルを分散形式でトレーニングすることを目的とした機械学習パラダイムである。
我々は、さらに別の適応型フェデレーション最適化法や、フェデレーション学習の分野でのいくつかのアイデアを提案する。
論文 参考訳(メタデータ) (2022-11-07T15:07:56Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
我々は、データ共有の利点が完全に損なわれているような、ナイーブなスキームが破滅的なフリーライディングのレベルにどのように結びつくかを示す。
次に,各エージェントが生成するデータ量を最大化する精度形成機構を導入する。
論文 参考訳(メタデータ) (2022-07-10T22:36:52Z) - Incentivizing Federated Learning [2.420324724613074]
本稿では,顧客に対して可能な限り多くのデータ提供を促すインセンティブメカニズムを提案する。
従来のインセンティブメカニズムとは異なり、私たちのアプローチはデータを収益化しません。
理論的には、ある条件下では、クライアントがフェデレーション学習に参加できる限り多くのデータを使用することを証明します。
論文 参考訳(メタデータ) (2022-05-22T23:02:43Z) - Trading Data For Learning: Incentive Mechanism For On-Device Federated
Learning [25.368195601622688]
フェデレートラーニング(Federated Learning)とは、さまざまなデバイスに分散したグローバルモデルのトレーニングの概念である。
この設定では、ユーザのデバイスが自身のデータ上で計算を行い、その結果をクラウドサーバと共有し、グローバルモデルを更新します。
ユーザは、フェデレートされたモデルトレーニングプロセス中に、ローカルデータのプライバシリークに悩まされる。
本稿では、信頼性の高いデータを提供する可能性の高いユーザを選択し、プライバシリークのコストを補償する効果的なインセンティブメカニズムを提案する。
論文 参考訳(メタデータ) (2020-09-11T18:37:58Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。