論文の概要: Trading Data For Learning: Incentive Mechanism For On-Device Federated
Learning
- arxiv url: http://arxiv.org/abs/2009.05604v1
- Date: Fri, 11 Sep 2020 18:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 21:08:03.920495
- Title: Trading Data For Learning: Incentive Mechanism For On-Device Federated
Learning
- Title(参考訳): 学習のためのトレーディングデータ:オンデバイスフェデレーション学習のためのインセンティブメカニズム
- Authors: Rui Hu, Yanmin Gong
- Abstract要約: フェデレートラーニング(Federated Learning)とは、さまざまなデバイスに分散したグローバルモデルのトレーニングの概念である。
この設定では、ユーザのデバイスが自身のデータ上で計算を行い、その結果をクラウドサーバと共有し、グローバルモデルを更新します。
ユーザは、フェデレートされたモデルトレーニングプロセス中に、ローカルデータのプライバシリークに悩まされる。
本稿では、信頼性の高いデータを提供する可能性の高いユーザを選択し、プライバシリークのコストを補償する効果的なインセンティブメカニズムを提案する。
- 参考スコア(独自算出の注目度): 25.368195601622688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning rests on the notion of training a global model
distributedly on various devices. Under this setting, users' devices perform
computations on their own data and then share the results with the cloud server
to update the global model. A fundamental issue in such systems is to
effectively incentivize user participation. The users suffer from privacy
leakage of their local data during the federated model training process.
Without well-designed incentives, self-interested users will be unwilling to
participate in federated learning tasks and contribute their private data. To
bridge this gap, in this paper, we adopt the game theory to design an effective
incentive mechanism, which selects users that are most likely to provide
reliable data and compensates for their costs of privacy leakage. We formulate
our problem as a two-stage Stackelberg game and solve the game's equilibrium.
Effectiveness of the proposed mechanism is demonstrated by extensive
simulations.
- Abstract(参考訳): フェデレーション学習は、さまざまなデバイス上で分散してグローバルモデルをトレーニングするという概念に基づいている。
この設定の下で、ユーザのデバイスは自身のデータで計算を行い、その結果をクラウドサーバと共有してグローバルモデルを更新する。
このようなシステムの基本的問題は、ユーザの参加を効果的に動機付けることである。
ユーザーは、フェデレートされたモデルトレーニングプロセス中に、ローカルデータのプライバシー漏洩に悩まされる。
十分に設計されたインセンティブがなければ、自己関心のあるユーザは、連合学習タスクに参加し、プライベートデータに貢献することを望まないだろう。
このギャップを埋めるために,本稿では,信頼性の高いデータを提供する可能性の高いユーザを選択し,プライバシリークのコストを補償する,効果的なインセンティブメカニズムを設計するためのゲーム理論を採用する。
この問題を2段階のStackelbergゲームとして定式化し、ゲームの平衡を解く。
提案手法の有効性を広範囲なシミュレーションにより実証した。
関連論文リスト
- Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning [0.12289361708127873]
フェデレーテッド・ラーニング(Federated Learning)は、参加者のデータを使って改善されたグローバルモデルをトレーニングする分散機械学習システムである。
データを真に入力し、安定した協力を促進するインセンティブメカニズムの確立は、検討すべき重要な問題となっている。
本稿では,サンプリング近似に基づく効率的なコア選択機構を提案する。
論文 参考訳(メタデータ) (2023-09-21T01:47:39Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
我々は、データ共有の利点が完全に損なわれているような、ナイーブなスキームが破滅的なフリーライディングのレベルにどのように結びつくかを示す。
次に,各エージェントが生成するデータ量を最大化する精度形成機構を導入する。
論文 参考訳(メタデータ) (2022-07-10T22:36:52Z) - Applied Federated Learning: Architectural Design for Robust and
Efficient Learning in Privacy Aware Settings [0.8454446648908585]
古典的な機械学習パラダイムは、中央にユーザーデータの集約を必要とする。
データの集中化は、内部および外部のセキュリティインシデントのリスクを高めることを含むリスクを引き起こす。
差分プライバシーによるフェデレーション学習は、サーバ側の集中化落とし穴を避けるように設計されている。
論文 参考訳(メタデータ) (2022-06-02T00:30:04Z) - Incentivizing Federated Learning [2.420324724613074]
本稿では,顧客に対して可能な限り多くのデータ提供を促すインセンティブメカニズムを提案する。
従来のインセンティブメカニズムとは異なり、私たちのアプローチはデータを収益化しません。
理論的には、ある条件下では、クライアントがフェデレーション学習に参加できる限り多くのデータを使用することを証明します。
論文 参考訳(メタデータ) (2022-05-22T23:02:43Z) - Comparative assessment of federated and centralized machine learning [0.0]
Federated Learning(FL)は、デバイス間でフェデレーションされたデータによってトレーニングが行われる、プライバシ保護機械学習スキームである。
本稿では,非IID分散データの性質から,フェデレーション学習に影響を及ぼす諸要因について論じる。
トレーニング対象のモデルサイズが合理的に大きくない場合には,フェデレーション学習がコスト面で有利であることを示す。
論文 参考訳(メタデータ) (2022-02-03T11:20:47Z) - An Incentive Mechanism for Federated Learning in Wireless Cellular
network: An Auction Approach [75.08185720590748]
Federated Learning(FL)は、機械学習の分散問題に対処できる分散学習フレームワークである。
本稿では,1つの基地局(BS)と複数のモバイルユーザを含むFLシステムについて考察する。
我々は,BSとモバイルユーザの間のインセンティブメカニズムを,BSが競売業者であり,モバイルユーザが売り手であるオークションゲームとして定式化する。
論文 参考訳(メタデータ) (2020-09-22T01:50:39Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Incentives for Federated Learning: a Hypothesis Elicitation Approach [10.452709936265274]
フェデレーション学習は、分散データソースから機械学習モデルを集めるための有望なパラダイムを提供する。
信頼性のあるフェデレート学習システムの成功は、分散された自己関心のあるユーザーが積極的に参加するという前提に基づいている。
本稿では,ローカルなユーザ側機械学習モデルの真理レポートをインセンティブ化する手法を提案する。
論文 参考訳(メタデータ) (2020-07-21T04:55:31Z) - Leveraging Semi-Supervised Learning for Fairness using Neural Networks [49.604038072384995]
機械学習に基づく意思決定システムの公平性に対する懸念が高まっている。
本稿では,ラベルのないデータから得られるニューラルネットワークを用いた半教師付きアルゴリズムを提案する。
提案したSSFairと呼ばれるモデルは、ラベルのないデータの情報を活用して、トレーニングデータのバイアスを軽減する。
論文 参考訳(メタデータ) (2019-12-31T09:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。