論文の概要: SAM-OCTA: A Fine-Tuning Strategy for Applying Foundation Model to OCTA
Image Segmentation Tasks
- arxiv url: http://arxiv.org/abs/2309.11758v1
- Date: Thu, 21 Sep 2023 03:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 16:50:39.634813
- Title: SAM-OCTA: A Fine-Tuning Strategy for Applying Foundation Model to OCTA
Image Segmentation Tasks
- Title(参考訳): SAM-OCTA: OCTAイメージセグメンテーションタスクに基礎モデルを適用するための微調整戦略
- Authors: Chengliang Wang, Xinrun Chen, Haojian Ning, Shiying Li
- Abstract要約: 低ランク適応手法を基礎モデル微調整に適用し,それに対応するプロンプトポイント生成戦略を提案する。
この手法はSAM-OCTAと呼ばれ、OCTA-500データセットで実験されている。
本手法は,最先端の性能指標を達成しつつ,局所血管の分断と動脈静脈の分断を効果的に行う。
- 参考スコア(独自算出の注目度): 2.8743451550676866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the analysis of optical coherence tomography angiography (OCTA) images,
the operation of segmenting specific targets is necessary. Existing methods
typically train on supervised datasets with limited samples (approximately a
few hundred), which can lead to overfitting. To address this, the low-rank
adaptation technique is adopted for foundation model fine-tuning and proposed
corresponding prompt point generation strategies to process various
segmentation tasks on OCTA datasets. This method is named SAM-OCTA and has been
experimented on the publicly available OCTA-500 dataset. While achieving
state-of-the-art performance metrics, this method accomplishes local vessel
segmentation as well as effective artery-vein segmentation, which was not
well-solved in previous works. The code is available at:
https://github.com/ShellRedia/SAM-OCTA.
- Abstract(参考訳): 光コヒーレンストモグラフィー血管造影(OCTA)画像の解析では,特定の目標をセグメンティングする操作が必要である。
既存のメソッドは通常、限られたサンプル(約数百)を持つ教師付きデータセットでトレーニングする。
これを解決するため,基礎モデルの微調整に低ランク適応手法を採用し,OCTAデータセット上で様々なセグメンテーションタスクを処理するためのプロンプトポイント生成戦略を提案する。
この手法はSAM-OCTAと呼ばれ、OCTA-500データセットで実験されている。
本手法は,最先端の性能指標の達成とともに,従来の研究では未解決であった局所血管のセグメンテーションと効果的な動脈静脈のセグメンテーションを実現する。
コードはhttps://github.com/shellredia/sam-octa。
関連論文リスト
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - SAM-OCTA2: Layer Sequence OCTA Segmentation with Fine-tuned Segment Anything Model 2 [2.314516220934268]
SAM(Segment Anything Model)バージョン2の微調整には低ランク適応方式が採用されている。
メソッドはSAM-OCTA2と呼ばれ、OCTA-500データセットで実験されている。
正常な2次元の面にFoveal avascular zone(FAZ)を分断し、スキャン層をまたいだ局所血管を効果的に追跡する。
論文 参考訳(メタデータ) (2024-09-14T03:28:24Z) - Adapting SAM for Volumetric X-Ray Data-sets of Arbitrary Sizes [0.0]
非破壊検査(NDT)のためのX線CTデータにおけるボリューム・インスタンス・セグメンテーションのための新しい手法を提案する。
Segment Anything Model (SAM) と tile-based Flood Filling Networks (FFN) を組み合わせる。
本研究は、ボリュームNDTデータセットにおけるSAMの性能を評価し、課題の画像シナリオにおけるセグメントインスタンスの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-09T17:12:04Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Finding Foundation Models for Time Series Classification with a PreText
Task [7.197233473373693]
本稿では,時系列分類のための事前訓練済みドメイン基盤モデルを提案する。
我々の方法論の重要な側面は、複数のデータセットにまたがる新しいプリテキストタスクである。
UCRアーカイブの実験では,この事前学習戦略が,事前学習を伴わずに従来の訓練方法よりも有意に優れていたことが示されている。
論文 参考訳(メタデータ) (2023-11-24T15:03:55Z) - SAM-OCTA: Prompting Segment-Anything for OCTA Image Segmentation [2.452498006404167]
OCTA画像の局所分割のためのSAM-OCTA法を提案する。
低ランク適応(LoRA)を用いたSAM(Pre-trained segment Any Model)の微調整法
論文 参考訳(メタデータ) (2023-10-11T04:14:59Z) - Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised
Learning [3.7931881761831328]
プレテキストタスクを含む自己教師付き学習(SSL)メソッドは、ラベルなしデータを使用したモデルの最初の事前トレーニングによって、この要件を克服する可能性を示している。
ラベル限定シナリオにおけるCTとMRI画像のセグメンテーションにおける2つのSSL手法の有効性を評価する。
最適に訓練され,実装が容易なSSLセグメンテーションモデルは,ラベル制限シナリオにおけるMRIおよびCT組織セグメンテーションの古典的な手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-14T16:34:05Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
本稿では,最新のロングテールLVISデータセットを用いて,最先端の2段階のインスタンスセグメンテーションモデルMask R-CNNの性能低下について検討する。
主な原因は、オブジェクト提案の不正確な分類である。
そこで本研究では,2段階のクラスバランスサンプリング手法により,分類ヘッドバイアスをより効果的に緩和する,簡単な校正フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-23T12:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。