Fast Satellite Tensorial Radiance Field for Multi-date Satellite Imagery
of Large Size
- URL: http://arxiv.org/abs/2309.11767v1
- Date: Thu, 21 Sep 2023 04:00:38 GMT
- Title: Fast Satellite Tensorial Radiance Field for Multi-date Satellite Imagery
of Large Size
- Authors: Tongtong Zhang, Yuanxiang Li
- Abstract summary: Existing NeRF models for satellite images suffer from slow speeds, mandatory solar information as input, and limitations in handling large satellite images.
We present SatensoRF, which significantly accelerates the entire process while employing fewer parameters for satellite imagery of large size.
- Score: 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing NeRF models for satellite images suffer from slow speeds, mandatory
solar information as input, and limitations in handling large satellite images.
In response, we present SatensoRF, which significantly accelerates the entire
process while employing fewer parameters for satellite imagery of large size.
Besides, we observed that the prevalent assumption of Lambertian surfaces in
neural radiance fields falls short for vegetative and aquatic elements. In
contrast to the traditional hierarchical MLP-based scene representation, we
have chosen a multiscale tensor decomposition approach for color, volume
density, and auxiliary variables to model the lightfield with specular color.
Additionally, to rectify inconsistencies in multi-date imagery, we incorporate
total variation loss to restore the density tensor field and treat the problem
as a denosing task.To validate our approach, we conducted assessments of
SatensoRF using subsets from the spacenet multi-view dataset, which includes
both multi-date and single-date multi-view RGB images. Our results clearly
demonstrate that SatensoRF surpasses the state-of-the-art Sat-NeRF series in
terms of novel view synthesis performance. Significantly, SatensoRF requires
fewer parameters for training, resulting in faster training and inference
speeds and reduced computational demands.
Related papers
- SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models [3.839322642354617]
We propose a novel diffusion-based fusion algorithm called textbfSatDiffMoE.
Our algorithm is highly flexible and allows training and inference on arbitrary number of low-resolution images.
Experimental results show that our proposed SatDiffMoE method achieves superior performance for the satellite image super-resolution tasks.
arXiv Detail & Related papers (2024-06-14T17:58:28Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images.
We propose tempering the diffusion model'sity with per-scene customization and mitigating the textural shift with masked training.
Our framework yields state-of-the-art NeRF inpainting results on various real-world scenes.
arXiv Detail & Related papers (2024-04-15T17:59:57Z) - SparseSat-NeRF: Dense Depth Supervised Neural Radiance Fields for Sparse
Satellite Images [0.0]
Digital surface model generation using traditional multi-view stereo matching (MVS) performs poorly over non-Lambertian surfaces.
NeRF offer a new paradigm for reconstructing surface geometries using continuous volumetric representation.
SpS-NeRF is an extension of Sat-NeRF adapted to sparse satellite views.
arXiv Detail & Related papers (2023-09-01T06:21:02Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - NeRF applied to satellite imagery for surface reconstruction [5.027411102165872]
We present Surf-NeRF, a modified implementation of the recently introduced Shadow Neural Radiance Field (S-NeRF) model.
This method is able to synthesize novel views from a sparse set of satellite images of a scene, while accounting for the variation in lighting present in the pictures.
The trained model can also be used to accurately estimate the surface elevation of the scene, which is often a desirable quantity for satellite observation applications.
arXiv Detail & Related papers (2023-04-09T01:37:13Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image
Denoising [0.0]
We introduce a hybrid RQUNet-VAE scheme for image and time series decomposition used to reduce noise in satellite imagery.
We also apply our scheme to several applications for multi-band satellite images, including: image denoising, image and time-series decomposition by diffusion and image segmentation.
arXiv Detail & Related papers (2022-08-25T19:51:07Z) - Sat-NeRF: Learning Multi-View Satellite Photogrammetry With Transient
Objects and Shadow Modeling Using RPC Cameras [10.269997499911668]
We introduce the Satellite Neural Radiance Field (Sat-NeRF), a new end-to-end model for learning multi-view satellite photogram in the wild.
Sat-NeRF combines some of the latest trends in neural rendering with native satellite camera models.
We evaluate Sat-NeRF using WorldView-3 images from different locations and stress the advantages of applying a bundle adjustment to the satellite camera models prior to training.
arXiv Detail & Related papers (2022-03-16T19:18:46Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs.
Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron.
arXiv Detail & Related papers (2021-12-03T07:33:47Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
This work proposes to bridge the gap between image quality and the price by improving the image quality via super-resolution (SR)
We design an SR framework that analyzes the regional information content on each patch of the low-resolution image.
We show substantial decrease in inference time while achieving similar performance to that of existing deep SR methods.
arXiv Detail & Related papers (2020-08-03T13:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.