FusionRF: High-Fidelity Satellite Neural Radiance Fields from Multispectral and Panchromatic Acquisitions
- URL: http://arxiv.org/abs/2409.15132v2
- Date: Fri, 28 Mar 2025 21:01:32 GMT
- Title: FusionRF: High-Fidelity Satellite Neural Radiance Fields from Multispectral and Panchromatic Acquisitions
- Authors: Michael Sprintson, Rama Chellappa, Cheng Peng,
- Abstract summary: We introduce FusionRF, a novel framework for digital surface reconstruction from satellite multispectral and panchromatic images.<n>We show that FusionRF provides an average of 17% improvement in depth reconstruction accuracy, and renders sharp training and novel views.
- Score: 38.55830312265355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce FusionRF, a novel framework for digital surface reconstruction from satellite multispectral and panchromatic images. Current work has demonstrated the increased accuracy of neural photogrammetry for surface reconstruction from optical satellite images compared to algorithmic methods. Common satellites produce both a panchromatic and multispectral image, which contain high spatial and spectral information respectively. Current neural reconstruction methods require multispectral images to be upsampled with a pansharpening method using the spatial data in the panchromatic image. However, these methods may introduce biases and hallucinations due to domain gaps. FusionRF introduces joint image fusion during optimization through a novel cross-resolution kernel that learns to resolve spatial resolution loss present in multispectral images. As input, FusionRF accepts the original multispectral and panchromatic data, eliminating the need for image preprocessing. FusionRF also leverages multimodal appearance embeddings that encode the image characteristics of each modality and view within a uniform representation. By optimizing on both modalities, FusionRF learns to fuse image modalities while performing reconstruction tasks and eliminates the need for a pansharpening preprocessing step. We evaluate our method on multispectral and panchromatic satellite images from the WorldView-3 satellite in various locations, and show that FusionRF provides an average of 17% improvement in depth reconstruction accuracy, and renders sharp training and novel views.
Related papers
- RelitLRM: Generative Relightable Radiance for Large Reconstruction Models [52.672706620003765]
We propose RelitLRM for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations.
Unlike prior inverse rendering methods requiring dense captures and slow optimization, RelitLRM adopts a feed-forward transformer-based model.
We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines.
arXiv Detail & Related papers (2024-10-08T17:40:01Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
arXiv Detail & Related papers (2023-12-05T18:59:58Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud
Rendering [7.522462414919854]
We present a neural point cloud rendering pipeline through a novel multi-frequency-aware patch adversarial learning framework.
The proposed approach aims to improve the rendering realness by minimizing the spectrum discrepancy between real and synthesized images.
Our method produces state-of-the-art results for neural point cloud rendering by a significant margin.
arXiv Detail & Related papers (2022-10-07T16:54:15Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
We design a network based on the transformer for fusing the low-resolution hyperspectral images and high-resolution multispectral images.
Considering the LR-HSIs hold the main spectral structure, the network focuses on the spatial detail estimation.
Various experiments and quality indexes show our approach's superiority compared with other state-of-the-art methods.
arXiv Detail & Related papers (2021-09-05T14:00:34Z) - Fast and High-Quality Blind Multi-Spectral Image Pansharpening [48.68143888901669]
We propose a fast approach to blind pansharpening and achieve state-of-the-art image reconstruction quality.
To achieve fast blind pansharpening, we decouple the solution of the blur kernel and of the HRMS image.
Our algorithm outperforms state-of-the-art model-based counterparts in terms of both computational time and reconstruction quality.
arXiv Detail & Related papers (2021-03-17T23:12:14Z) - Interpretable Deep Multimodal Image Super-Resolution [23.48305854574444]
Multimodal image super-resolution (SR) is the reconstruction of a high resolution image given a low-resolution observation with the aid of another image modality.
We present a multimodal deep network design that integrates coupled sparse priors and allows the effective fusion of information from another modality into the reconstruction process.
arXiv Detail & Related papers (2020-09-07T14:08:35Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.