Quantum Microservices Development and Deployment
- URL: http://arxiv.org/abs/2309.11926v1
- Date: Thu, 21 Sep 2023 09:40:55 GMT
- Title: Quantum Microservices Development and Deployment
- Authors: Enrique Moguel, Jose Garcia-Alonso, Majid Haghparast, Juan M. Murillo
- Abstract summary: We propose a pipeline for the continuous deployment of services.
We have validated the proposal by making use of a modification of the OpenAPI specification, the GitHub Actions, and AWS.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early advances in the field of quantum computing have provided new
opportunities to tackle intricate problems in areas as diverse as mathematics,
physics, or healthcare. However, the technology required to construct such
systems where different pieces of quantum and classical software collaborate is
currently lacking. For this reason, significant advancements in quantum
service-oriented computing are necessary to enable developers to create and
operate quantum services and microservices comparable to their classical
counterparts. Therefore, the core objective of this work is to establish the
necessary technological infrastructure that enables the application of the
benefits and lessons learned from service-oriented computing to the domain of
quantum software engineering. To this end, we propose a pipeline for the
continuous deployment of services. Additionally, we have validated the proposal
by making use of a modification of the OpenAPI specification, the GitHub
Actions, and AWS.
Related papers
- SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.
We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - Quantum Serverless Paradigm and Application Development using the QFaaS Framework [17.398771276317575]
This chapter introduces the concept of serverless quantum computing with examples using QF.
The framework utilizes the serverless computing model to simplify quantum application development and deployment.
The chapter provides comprehensive documentation and guidelines for deploying and using QF.
arXiv Detail & Related papers (2024-07-03T06:12:55Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - A Reference Architecture for Quantum Computing as a Service [0.0]
Quantum computers (QCs) aim to disrupt the statusquo of computing -- replacing traditional systems and platforms that are driven by digital circuits and modular software.
QCs that rely on quantum mechanics can achieve "quantum computational supremacy" over traditional, i.e., digital computing systems.
This research contributes by developing a reference architecture for enabling quantum computing as a service.
arXiv Detail & Related papers (2023-06-03T17:48:18Z) - Symbolic quantum programming for supporting applications of quantum
computing technologies [0.0]
The main focus of this paper is on quantum computing technologies, as they can in the most direct way benefit from developing tools.
We deliver a short survey of the most popular approaches in the field of quantum software development and we aim at pointing their strengths and weaknesses.
Next, we describe a software architecture and its preliminary implementation supporting the development of quantum programs using symbolic approach.
arXiv Detail & Related papers (2023-02-18T18:30:00Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Towards an Automated Framework for Realizing Quantum Computing Solutions [3.610459670994051]
We envision a framework that allows users to employ quantum computing solutions in an automatic fashion.
We provide proof-of-concept implementations for two different classes of problems which are publicly available on GitHub.
arXiv Detail & Related papers (2022-10-26T18:00:01Z) - QFaaS: A Serverless Function-as-a-Service Framework for Quantum
Computing [22.068803245816266]
We propose a Quantum Function-as-a-Service framework to advance quantum computing.
Our framework provides essential components of a quantum serverless platform to simplify the software development and adapt to the quantum cloud computing paradigm.
This paper proposes architectural design, principal components, the life cycle of hybrid quantum-classical function, operation workflow, and implementation of QF.
arXiv Detail & Related papers (2022-05-30T04:18:53Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A backend-agnostic, quantum-classical framework for simulations of
chemistry in C++ [62.997667081978825]
We present the XACC system-level quantum computing framework as a platform for prototyping, developing, and deploying quantum-classical software.
A series of examples demonstrating some of the state-of-the-art chemistry algorithms currently implemented in XACC are presented.
arXiv Detail & Related papers (2021-05-04T16:53:51Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.