論文の概要: Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2309.11930v2
- Date: Wed, 17 Apr 2024 12:27:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:40:10.950680
- Title: Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning
- Title(参考訳): ギャップを埋める:オープンワールドセミスーパービジョンラーニングのための学習ペース同期
- Authors: Bo Ye, Kai Gan, Tong Wei, Min-Ling Zhang,
- Abstract要約: オープンワールドの半教師付き学習において、機械学習モデルはラベルなしのデータから新しいカテゴリを明らかにすることを任務とする。
本稿では,(1)モデル偏差を軽減するためにクラス固有の負のマージンを課するアダプティブ・コミュニケート・ラミナル・ロス,(2)モデルによって予測される擬似ラベルを利用した擬似ラベル・コントラッシブ・クラスタリングについて紹介する。
本手法は,授業の学習速度のバランスを保ち,画像Netデータセットの平均精度を3%向上させる。
- 参考スコア(独自算出の注目度): 44.91863420044712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data while maintaining performance on seen categories from labeled data. The central challenge is the substantial learning gap between seen and novel categories, as the model learns the former faster due to accurate supervisory information. Moreover, capturing the semantics of unlabeled novel category samples is also challenging due to the missing label information. To address the above issues, we introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together in the output space. Extensive experiments on benchmark datasets demonstrate that previous approaches may significantly hinder novel class learning, whereas our method strikingly balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset. Importantly, we find that fine-tuning the self-supervised pre-trained model significantly boosts the performance, which is overlooked in prior literature. Our code is available at https://github.com/yebo0216best/LPS-main.
- Abstract(参考訳): オープンワールド半教師付き学習において、機械学習モデルはラベル付きデータから新しいカテゴリを抽出し、ラベル付きデータから見るカテゴリのパフォーマンスを維持する。
モデルは、正確な監督情報によって、前者をより早く学習する。
また,ラベル情報不足のため,未ラベルの新規カテゴリのセマンティクスの取得も困難である。
上記の問題に対処するため、紹介する。
1) モデル偏差を軽減するためにクラス固有の負のマージンを課するアダプティブ・シンクロナイジング・限界損失、及び
2) モデルによって予測される擬似ラベルを利用して同一カテゴリの未ラベルデータを出力空間にまとめる擬似ラベルコントラストクラスタリングを行う。
ベンチマークデータセットに対する大規模な実験により、従来の手法は新しいクラス学習を著しく阻害することが示されたが、我々の手法は目に見えるクラスと新しいクラスの間の学習速度を著しくバランスさせ、ImageNetデータセットの平均精度が顕著に3%向上した。
重要なことは、自己教師付き事前学習モデルの微調整によって性能が著しく向上し、従来の文献では見落とされてしまうことである。
私たちのコードはhttps://github.com/yebo0216best/LPS-mainで利用可能です。
関連論文リスト
- Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
一般カテゴリー発見(GCD)は、半教師付き学習のより現実的で挑戦的な設定に対処することを目的としている。
メモリ一貫性を誘導する分枝・分枝学習フレームワーク(MCDL)を提案する。
本手法は,画像認識の目に見えるクラスと見えないクラスの両方において,最先端のモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-24T09:39:45Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - AutoNovel: Automatically Discovering and Learning Novel Visual
Categories [138.80332861066287]
本稿では,他のクラスをラベル付けしたイメージコレクションにおける新しいクラス発見問題に対処するため,AutoNovelと呼ばれる新しいアプローチを提案する。
我々はAutoNovelを標準分類ベンチマークで評価し、新しいカテゴリー発見の手法をかなり上回っている。
論文 参考訳(メタデータ) (2021-06-29T11:12:16Z) - Open-World Semi-Supervised Learning [66.90703597468377]
本稿では,従来のクラスを認識するためにモデルを必要とする,新しいオープンワールド半教師付き学習環境を提案する。
データの分類とクラスタ化を同時に行うアプローチであるORCAを提案する。
我々は,ORCAが新しいクラスを正確に発見し,ベンチマーク画像分類データセット上で以前に見られたクラスにサンプルを割り当てることを示した。
論文 参考訳(メタデータ) (2021-02-06T07:11:07Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
学習中の間欠的にラベルを完全に無視することは,小サンプル体制における性能を著しく向上させることを示す。
本手法は,最先端のSSLアルゴリズムの高速化に有効であることを示す。
論文 参考訳(メタデータ) (2020-12-01T14:19:14Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
少ないショットラーニングは、テスト時に少数のサンプルしか持たない、新しいカテゴリに迅速に適応することを目的としている。
本稿では,より困難なシナリオ,すなわちクロスグラニュラリティ・グラニュラリティ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラティヴ・グラニュラ
画像埋め込みの類似性に応じて,各粗いクラスを擬似微細クラスにグリーディクラスタリングすることで,詳細なデータ分布を近似する。
論文 参考訳(メタデータ) (2020-07-11T03:44:21Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
我々は,他のクラスをラベル付けした画像コレクションにおいて,新しいクラスを発見する問題に対処する。
汎用クラスタリングモデルを学び、後者を用いて、非競合データ中の新しいクラスを識別する。
我々は,標準分類ベンチマークに対するアプローチと,新しいカテゴリー発見法の性能を,有意なマージンで評価した。
論文 参考訳(メタデータ) (2020-02-13T18:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。