Enhanced Deterministic Approximation Algorithm for Non-monotone Submodular Maximization under Knapsack Constraint with Linear Query Complexity
- URL: http://arxiv.org/abs/2405.12252v1
- Date: Mon, 20 May 2024 02:24:58 GMT
- Title: Enhanced Deterministic Approximation Algorithm for Non-monotone Submodular Maximization under Knapsack Constraint with Linear Query Complexity
- Authors: Canh V. Pham,
- Abstract summary: We improve the approximation factor of the fastest deterministic algorithm from $6+epsilon$ to $5+epsilon$.
Our technique is based on optimizing the performance of two components: the threshold greedy subroutine and the building of two disjoint sets as candidate solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we consider the Submodular Maximization under Knapsack (SMK) constraint problem over the ground set of size $n$. The problem recently attracted a lot of attention due to its applications in various domains of combination optimization, artificial intelligence, and machine learning. We improve the approximation factor of the fastest deterministic algorithm from $6+\epsilon$ to $5+\epsilon$ while keeping the best query complexity of $O(n)$, where $\epsilon >0$ is a constant parameter. Our technique is based on optimizing the performance of two components: the threshold greedy subroutine and the building of two disjoint sets as candidate solutions. Besides, by carefully analyzing the cost of candidate solutions, we obtain a tighter approximation factor.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Improved Parallel Algorithm for Non-Monotone Submodular Maximization under Knapsack Constraint [0.0]
This work proposes an efficient parallel algorithm for non-monomodular size under a knapsack constraint.
Our algorithm improves the existing parallel one from $8+epsilon$ to $7+epsilon$ with $O(log n)$ adaptive complexity.
arXiv Detail & Related papers (2024-09-06T17:17:52Z) - Robust Approximation Algorithms for Non-monotone $k$-Submodular
Maximization under a Knapsack Constraint [0.0]
Two deterministic approximation algorithms are presented for the problem of non-monotone $k$-submodular complexity under a knapsack constraint.
Our algorithms provide constant approximation ratios within only $O(nk)$ query complexity for the non-monotone objective.
arXiv Detail & Related papers (2023-09-21T12:42:52Z) - Linear Query Approximation Algorithms for Non-monotone Submodular
Maximization under Knapsack Constraint [16.02833173359407]
This work introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular over a ground set of size $n$ subject to a knapsack constraint.
$mathsfDLA$ is a deterministic algorithm that provides an approximation factor of $6+epsilon$ while $mathsfRLA$ is a randomized algorithm with an approximation factor of $4+epsilon$.
arXiv Detail & Related papers (2023-05-17T15:27:33Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Submodular Maximization subject to a Knapsack Constraint: Combinatorial
Algorithms with Near-optimal Adaptive Complexity [13.416309759182635]
We obtain the first constant approximation for non-monotone submodular algorithms with near-optimal $O(log n)$ adaptive complexity.
Our algorithm asks $tildeO(n2)$ value queries, but can be modified to run with only $tildeO(n)$ instead.
This is also the first approach with sublinear adaptive complexity for the problem and yields comparable to the state-of-the-art even for special cases of cardinality constraints or monotone objectives.
arXiv Detail & Related papers (2021-02-16T18:15:51Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Deterministic Approximation for Submodular Maximization over a Matroid
in Nearly Linear Time [16.26380955876814]
We study the problem of maximizing a non-monotone, non-negative submodular function subject to a matroid constraint.
We show that this deterministic ratio can be improved to $frac14$ under $mathcalO(nr)$ time complexity.
We then present a more practical algorithm dubbed TwinGreedyFast which achieves $frac14-epsilon$ deterministic ratio in nearly-linear running time.
arXiv Detail & Related papers (2020-10-22T03:52:08Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query
Complexity [109.54166127479093]
Zeroth-order (a.k.a, derivative-free) methods are a class of effective optimization methods for solving machine learning problems.
In this paper, we propose a class faster faster zerothorder alternating gradient method multipliers (MMADMM) to solve the non finitesum problems.
We show that ZOMMAD methods can achieve a lower function $O(frac13nfrac1)$ for finding an $epsilon$-stationary point.
At the same time, we propose a class faster zerothorder online ADM methods (M
arXiv Detail & Related papers (2019-07-30T02:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.