論文の概要: Uplift vs. predictive modeling: a theoretical analysis
- arxiv url: http://arxiv.org/abs/2309.12036v1
- Date: Thu, 21 Sep 2023 12:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 15:18:41.450253
- Title: Uplift vs. predictive modeling: a theoretical analysis
- Title(参考訳): uplift対予測モデリング:理論的分析
- Authors: Th\'eo Verhelst, Robin Petit, Wouter Verbeke, Gianluca Bontempi
- Abstract要約: 本稿では,理論的基礎から始まり,昇降・予測的手法の性能に影響を及ぼすパラメータを明らかにすることから,その主題を包括的に扱うことを提案する。
本論文は,二項帰結事例と二項作用に着目し,古典的予測手法と比較し,昇降モデリングの理論的解析を行った。
- 参考スコア(独自算出の注目度): 1.2412255325209152
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the growing popularity of machine-learning techniques in
decision-making, the added value of causal-oriented strategies with respect to
pure machine-learning approaches has rarely been quantified in the literature.
These strategies are crucial for practitioners in various domains, such as
marketing, telecommunications, health care and finance. This paper presents a
comprehensive treatment of the subject, starting from firm theoretical
foundations and highlighting the parameters that influence the performance of
the uplift and predictive approaches. The focus of the paper is on a binary
outcome case and a binary action, and the paper presents a theoretical analysis
of uplift modeling, comparing it with the classical predictive approach. The
main research contributions of the paper include a new formulation of the
measure of profit, a formal proof of the convergence of the uplift curve to the
measure of profit ,and an illustration, through simulations, of the conditions
under which predictive approaches still outperform uplift modeling. We show
that the mutual information between the features and the outcome plays a
significant role, along with the variance of the estimators, the distribution
of the potential outcomes and the underlying costs and benefits of the
treatment and the outcome.
- Abstract(参考訳): 意思決定における機械学習技術の普及にもかかわらず、純粋な機械学習アプローチに対する因果指向戦略の付加価値が文献で定量化されることは稀である。
これらの戦略は、マーケティング、電気通信、医療、金融など様々な分野の実践者にとって重要である。
本論文は, 理論的基礎から始まり, 昇降・予測的アプローチの性能に影響を与えるパラメータを明らかにすることから, 対象を包括的に扱うものである。
論文の焦点は2値結果の場合と2値作用であり、本論文は古典的な予測手法と比較し、上昇モデリングの理論的解析を示す。
この論文の主な研究成果は、利益の尺度の新しい定式化、利益の尺度への上昇曲線の収束の形式的証明、そして予測的アプローチが上昇のモデリングを上回るような条件のシミュレーションによるイラストレーションである。
特徴と結果の相互情報と推定器のばらつき, 潜在的な結果の分布, 治療と結果の基盤となる費用と利益との間に, 重要な役割を担っていることを示す。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Counterfactual Fairness by Combining Factual and Counterfactual Predictions [18.950415688199993]
医療や雇用といった高度な分野において、意思決定における機械学習(ML)の役割は、かなりの公平さの懸念を提起する。
この研究は、あらゆる個人に対するMLモデルの結果が、異なる人口集団に属していた場合、変化しないべきであると仮定する対実公正(CF)に焦点を当てている。
本稿では,CFと予測性能のトレードオフをモデルに依存しない形で理論的に検討する。
論文 参考訳(メタデータ) (2024-09-03T15:21:10Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
パラメータ効率の細かいチューニング(PEFT)は、パラメータの選択したサブセットを最適化し、残りを固定し、計算とストレージのオーバーヘッドを大幅に削減することに焦点を当てている。
分解の観点からそれらを分離することで、すべてのアプローチを統一する第一歩を踏み出します。
本稿では,PEFT技術の性能向上を目的とした,単純かつ効果的なフレームワークとともに,新しい2つのPEFT手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:44:42Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Interpretable Multiple Treatment Revenue Uplift Modeling [4.9571232160914365]
アップリフトモデルは、治療による顧客の行動の変化を予測することで、企業の意思決定をサポートします。
本稿は,複数の治療と連続的な結果に対する上昇モデルを開発することにより,対応するアプローチを拡張する。
論文 参考訳(メタデータ) (2021-01-09T11:29:00Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
観察データによる因果推論の鍵は、それぞれの治療タイプに関連する予測的特徴のバランスを達成することである。
近年の文献では、この目標を達成するために表現学習を探求している。
因果効果を柔軟かつスケーラブルかつ正確に推定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-23T19:06:03Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
本稿では,予測性能の最適化を目的とした定量的分析のための機械学習(ML)手法を提案する。
両フィールド間の潜在的な相乗効果について考察する。
我々は,コンピュータサイエンスの用語のデミスティフィケーションを目指して,定量的な社会科学の聴衆に手持ちの予測モデルの導入を行っている。
論文 参考訳(メタデータ) (2020-03-30T13:06:25Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。