ALLaM: Large Language Models for Arabic and English
- URL: http://arxiv.org/abs/2407.15390v1
- Date: Mon, 22 Jul 2024 05:35:17 GMT
- Title: ALLaM: Large Language Models for Arabic and English
- Authors: M Saiful Bari, Yazeed Alnumay, Norah A. Alzahrani, Nouf M. Alotaibi, Hisham A. Alyahya, Sultan AlRashed, Faisal A. Mirza, Shaykhah Z. Alsubaie, Hassan A. Alahmed, Ghadah Alabduljabbar, Raghad Alkhathran, Yousef Almushayqih, Raneem Alnajim, Salman Alsubaihi, Maryam Al Mansour, Majed Alrubaian, Ali Alammari, Zaki Alawami, Abdulmohsen Al-Thubaity, Ahmed Abdelali, Jeril Kuriakose, Abdalghani Abujabal, Nora Al-Twairesh, Areeb Alowisheq, Haidar Khan,
- Abstract summary: We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT)
Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English)
We show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment.
- Score: 9.881560166505452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT). ALLaM is carefully trained considering the values of language alignment and knowledge transfer at scale. Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining on a mixture of Arabic and English text can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English). Furthermore, we highlight the effectiveness of using parallel/translated data to aid the process of knowledge alignment between languages. Finally, we show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment. ALLaM achieves state-of-the-art performance in various Arabic benchmarks, including MMLU Arabic, ACVA, and Arabic Exams. Our aligned models improve both in Arabic and English from their base aligned models.
Related papers
- Swan and ArabicMTEB: Dialect-Aware, Arabic-Centric, Cross-Lingual, and Cross-Cultural Embedding Models and Benchmarks [17.5987429821102]
Swan is a family of embedding models centred around the Arabic language.
Two variants: Swan-Small, based on ARBERTv2, and Swan-Large, built on ArMistral, a pretrained Arabic large language model.
arXiv Detail & Related papers (2024-11-02T09:39:49Z) - AlcLaM: Arabic Dialectal Language Model [2.8477895544986955]
We construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms.
We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch.
Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models.
arXiv Detail & Related papers (2024-07-18T02:13:50Z) - Bilingual Adaptation of Monolingual Foundation Models [48.859227944759986]
We present an efficient method for adapting a monolingual Large Language Model (LLM) to another language.
Our two-stage approach begins with expanding the vocabulary and training only the embeddings matrix.
By continually pre-training on a mix of Arabic and English corpora, the model retains its proficiency in English while acquiring capabilities in Arabic.
arXiv Detail & Related papers (2024-07-13T21:09:38Z) - GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning [0.0]
We introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content.
We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality.
Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks.
arXiv Detail & Related papers (2024-07-02T10:43:49Z) - Training a Bilingual Language Model by Mapping Tokens onto a Shared
Character Space [2.9914612342004503]
We train a bilingual Arabic-Hebrew language model using a transliterated version of Arabic texts in Hebrew.
We assess the performance of a language model that employs a unified script for both languages, on machine translation.
arXiv Detail & Related papers (2024-02-25T11:26:39Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - On the importance of Data Scale in Pretraining Arabic Language Models [46.431706010614334]
We conduct a comprehensive study on the role of data in Arabic Pretrained Language Models (PLMs)
We reassess the performance of a suite of state-of-the-art Arabic PLMs by retraining them on massive-scale, high-quality Arabic corpora.
Our analysis strongly suggests that pretraining data by far is the primary contributor to performance, surpassing other factors.
arXiv Detail & Related papers (2024-01-15T15:11:15Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open
Generative Large Language Models [57.76998376458017]
We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs)
The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts.
We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models.
arXiv Detail & Related papers (2023-08-30T17:07:17Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.