Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions
- URL: http://arxiv.org/abs/2309.12342v2
- Date: Wed, 8 May 2024 14:48:39 GMT
- Title: Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions
- Authors: Reem I. Masoud, Ziquan Liu, Martin Ferianc, Philip Treleaven, Miguel Rodrigues,
- Abstract summary: This research proposes a Cultural Alignment Test (Hoftede's CAT) to quantify cultural alignment using Hofstede's cultural dimension framework.
We quantitatively evaluate large language models (LLMs) against the cultural dimensions of regions like the United States, China, and Arab countries.
Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions.
- Score: 10.415002561977655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of large language models (LLMs) raises concerns regarding their cultural misalignment and potential ramifications on individuals and societies with diverse cultural backgrounds. While the discourse has focused mainly on political and social biases, our research proposes a Cultural Alignment Test (Hoftede's CAT) to quantify cultural alignment using Hofstede's cultural dimension framework, which offers an explanatory cross-cultural comparison through the latent variable analysis. We apply our approach to quantitatively evaluate LLMs, namely Llama 2, GPT-3.5, and GPT-4, against the cultural dimensions of regions like the United States, China, and Arab countries, using different prompting styles and exploring the effects of language-specific fine-tuning on the models' behavioural tendencies and cultural values. Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions. Our study demonstrates that while all LLMs struggle to grasp cultural values, GPT-4 shows a unique capability to adapt to cultural nuances, particularly in Chinese settings. However, it faces challenges with American and Arab cultures. The research also highlights that fine-tuning LLama 2 models with different languages changes their responses to cultural questions, emphasizing the need for culturally diverse development in AI for worldwide acceptance and ethical use. For more details or to contribute to this research, visit our GitHub page https://github.com/reemim/Hofstedes_CAT/
Related papers
- Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
We propose CultureSPA, a framework that allows large language models to align to pluralistic cultures.
By comparing culture-aware/unaware outputs, we are able to detect and collect culture-related instances.
Extensive experiments demonstrate that CultureSPA significantly improves the alignment of LLMs to diverse cultures without compromising general abilities.
arXiv Detail & Related papers (2024-10-16T19:06:08Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMs are increasingly deployed in global applications, ensuring users from diverse backgrounds feel respected and understood.
Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values.
We present two key contributions: A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and a culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators.
arXiv Detail & Related papers (2024-10-15T18:13:10Z) - Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
We present a simple and inexpensive method that uses a combination of in-context learning (ICL) and human survey data.
We show that our method could prove useful in test languages other than English and can improve alignment to the cultural values that correspond to a range of culturally diverse countries.
arXiv Detail & Related papers (2024-08-29T12:18:04Z) - How Well Do LLMs Identify Cultural Unity in Diversity? [12.982460687543952]
We introduce a benchmark dataset for evaluating decoder-only large language models (LLMs) in understanding the cultural unity of concepts.
CUNIT consists of 1,425 evaluation examples building upon 285 traditional cultural-specific concepts across 10 countries.
We design a contrastive matching task to evaluate the LLMs' capability to identify highly associated cross-cultural concept pairs.
arXiv Detail & Related papers (2024-08-09T14:45:22Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
We uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations.
We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures.
arXiv Detail & Related papers (2024-04-16T00:50:43Z) - Does Mapo Tofu Contain Coffee? Probing LLMs for Food-related Cultural Knowledge [47.57055368312541]
We introduce FmLAMA, a multilingual dataset centered on food-related cultural facts and variations in food practices.
We analyze LLMs across various architectures and configurations, evaluating their performance in both monolingual and multilingual settings.
arXiv Detail & Related papers (2024-04-10T08:49:27Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.