How Well Do LLMs Identify Cultural Unity in Diversity?
- URL: http://arxiv.org/abs/2408.05102v1
- Date: Fri, 9 Aug 2024 14:45:22 GMT
- Title: How Well Do LLMs Identify Cultural Unity in Diversity?
- Authors: Jialin Li, Junli Wang, Junjie Hu, Ming Jiang,
- Abstract summary: We introduce a benchmark dataset for evaluating decoder-only large language models (LLMs) in understanding the cultural unity of concepts.
CUNIT consists of 1,425 evaluation examples building upon 285 traditional cultural-specific concepts across 10 countries.
We design a contrastive matching task to evaluate the LLMs' capability to identify highly associated cross-cultural concept pairs.
- Score: 12.982460687543952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much work on the cultural awareness of large language models (LLMs) focuses on the models' sensitivity to geo-cultural diversity. However, in addition to cross-cultural differences, there also exists common ground across cultures. For instance, a bridal veil in the United States plays a similar cultural-relevant role as a honggaitou in China. In this study, we introduce a benchmark dataset CUNIT for evaluating decoder-only LLMs in understanding the cultural unity of concepts. Specifically, CUNIT consists of 1,425 evaluation examples building upon 285 traditional cultural-specific concepts across 10 countries. Based on a systematic manual annotation of cultural-relevant features per concept, we calculate the cultural association between any pair of cross-cultural concepts. Built upon this dataset, we design a contrastive matching task to evaluate the LLMs' capability to identify highly associated cross-cultural concept pairs. We evaluate 3 strong LLMs, using 3 popular prompting strategies, under the settings of either giving all extracted concept features or no features at all on CUNIT Interestingly, we find that cultural associations across countries regarding clothing concepts largely differ from food. Our analysis shows that LLMs are still limited to capturing cross-cultural associations between concepts compared to humans. Moreover, geo-cultural proximity shows a weak influence on model performance in capturing cross-cultural associations.
Related papers
- CROPE: Evaluating In-Context Adaptation of Vision and Language Models to Culture-Specific Concepts [45.77570690529597]
We introduce CROPE, a visual question answering benchmark designed to probe the knowledge of culture-specific concepts.
Our evaluation of several state-of-the-art open Vision and Language models shows large performance disparities between culture-specific and common concepts.
Experiments with contextual knowledge indicate that models struggle to effectively utilize multimodal information and bind culture-specific concepts to their depictions.
arXiv Detail & Related papers (2024-10-20T17:31:19Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
We propose CultureSPA, a framework that allows large language models to align to pluralistic cultures.
By comparing culture-aware/unaware outputs, we are able to detect and collect culture-related instances.
Extensive experiments demonstrate that CultureSPA significantly improves the alignment of LLMs to diverse cultures without compromising general abilities.
arXiv Detail & Related papers (2024-10-16T19:06:08Z) - Benchmarking Vision Language Models for Cultural Understanding [31.898921287065242]
This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing Vision Language Models (VLMs)
We curate a collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents.
The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions.
arXiv Detail & Related papers (2024-07-15T17:21:41Z) - From Local Concepts to Universals: Evaluating the Multicultural Understanding of Vision-Language Models [10.121734731147376]
Vision-language models' performance remains suboptimal on images from non-western cultures.
Various benchmarks have been proposed to test models' cultural inclusivity, but they have limited coverage of cultures.
We introduce the GlobalRG benchmark, comprising two challenging tasks: retrieval across universals and cultural visual grounding.
arXiv Detail & Related papers (2024-06-28T23:28:28Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
We uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations.
We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures.
arXiv Detail & Related papers (2024-04-16T00:50:43Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
This research proposes a Cultural Alignment Test (Hoftede's CAT) to quantify cultural alignment using Hofstede's cultural dimension framework.
We quantitatively evaluate large language models (LLMs) against the cultural dimensions of regions like the United States, China, and Arab countries.
Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions.
arXiv Detail & Related papers (2023-08-25T14:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.