Optimizing Traversing and Retrieval Speed of Large Breached Databases
- URL: http://arxiv.org/abs/2309.12364v1
- Date: Wed, 6 Sep 2023 13:11:18 GMT
- Title: Optimizing Traversing and Retrieval Speed of Large Breached Databases
- Authors: Mayank Gite,
- Abstract summary: Breached data refers to the unauthorized access, theft, or exposure of confidential or sensitive information.
Data breaches are often the result of malicious activities such as hacking, phishing, insider threats, malware, or physical theft.
Breached records are commonly sold on the dark web or made available on various public forums.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Breached data refers to the unauthorized access, theft, or exposure of confidential or sensitive information. Breaches typically occur when malicious actors or unauthorized users breach secure systems or networks, resulting in compromised personally identifiable information (PII), protected or personal health information (PHI), payment card industry (PCI) information, or other sensitive data. Data breaches are often the result of malicious activities such as hacking, phishing, insider threats, malware, or physical theft. The misuse of breached data can lead to identity theft, fraud, spamming, or blackmailing. Organizations that experience data breaches may face legal and financial consequences, reputational damage, and harm to their customers or users. Breached records are commonly sold on the dark web or made available on various public forums. To counteract these malicious activities, it is possible to collect breached databases and mitigate potential harm. These databases can be quite large, reaching sizes of up to 150 GB or more. Typically, breached data is stored in the CSV (Comma Separated Value) format due to its simplicity and lightweight nature, which reduces storage requirements. Analyzing and traversing large breached databases necessitates substantial computational power. However, this research explores techniques to optimize database traversal speed without the need to rent expensive cloud machines or virtual private servers (VPS). This optimization will enable individual security researchers to analyze and process large databases on their personal computer systems while significantly reducing costs.
Related papers
- Privacy Aware Memory Forensics [3.382960674045592]
Recent surveys indicate that 60% of data breaches are primarily caused by malicious insider threats.
In this research, we present a novel solution to detect data leakages by insiders in an organization.
Our approach captures the RAM of the insiders device and analyses it for sensitive information leaks from a host system.
arXiv Detail & Related papers (2024-06-13T11:18:49Z) - Root causes, ongoing difficulties, proactive prevention techniques, and emerging trends of enterprise data breaches [0.0]
Businesses now consider data to be a crucial asset, and any breach of this data can have dire repercussions.
Enterprises now place a high premium on detecting and preventing data loss due to the growing amount of data and the increasing frequency of data breaches.
This review attempts to highlight interesting prospects and offer insightful information to those who are interested in learning about the risks that businesses face from data leaks.
arXiv Detail & Related papers (2023-11-27T20:34:10Z) - A high throughput Intrusion Detection System (IDS) to enhance the security of data transmission among research centers [39.65647745132031]
This paper presents a packet sniffer that was designed using a commercial FPGA development board.
The system can support a data throughput of 10 Gbit/s with preliminary results showing that the speed of data transmission can be reliably extended to 100 Gbit/s.
It is particularly suited for the security of universities and research centers, where point-to-point network connections are dominant.
arXiv Detail & Related papers (2023-11-10T14:30:00Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure
Dataset Release [52.504589728136615]
We develop a data poisoning method by which publicly released data can be minimally modified to prevent others from train-ing models on it.
We demonstrate the success of our approach onImageNet classification and on facial recognition.
arXiv Detail & Related papers (2021-02-16T19:12:34Z) - FakeSafe: Human Level Data Protection by Disinformation Mapping using
Cycle-consistent Adversarial Network [4.987581730476023]
disinformation strategy can be adapted into data science to protect valuable private and sensitive data.
Huge amount of private data are being generated from personal devices such as smart phone and wearable.
Building a secure data transfer and storage infrastructure to preserving privacy is costly in most cases and there is always a concern of data security due to human errors.
We propose a method, named FakeSafe, to provide human level data protection using generative adversarial network with cycle consistency.
arXiv Detail & Related papers (2020-11-23T08:47:40Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
In pandemic situations, such as the COVID-19 and Ebola outbreak, the action related to sharing health data is crucial to avoid the massive infection and decrease the number of deaths.
In this sense, permissioned blockchain technology emerges to empower users to get their rights providing data ownership, transparency, and security through an immutable, unified, and distributed database ruled by smart contracts.
arXiv Detail & Related papers (2020-10-22T13:19:38Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z) - BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data
Silos [73.84437456144994]
Contact tracing is an important method to control the spread of an infectious disease such as COVID-19.
Current solutions do not utilize the huge volume of data stored in business databases and individual digital devices.
We propose BeeTrace, a unified platform that breaks data silos and deploys state-of-the-art cryptographic protocols to guarantee privacy goals.
arXiv Detail & Related papers (2020-07-05T10:33:45Z) - Security and Privacy Preserving Deep Learning [2.322461721824713]
Massive data collection required for deep learning presents obvious privacy issues.
Users personal, highly sensitive data such as photos and voice recordings are kept indefinitely by the companies that collect it.
Deep neural networks are susceptible to various inference attacks as they remember information about their training data.
arXiv Detail & Related papers (2020-06-23T01:53:46Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil"
An open conflict is arising between business demands for data and a desire for privacy.
We propose and test a vision of a personal information market with privacy.
arXiv Detail & Related papers (2020-05-13T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.